Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
Nat Rev Mol Cell Biol. 2018 Mar;19(3):192-206. doi: 10.1038/nrm.2017.94. Epub 2017 Oct 11.
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
与组成核小体的核心组蛋白一起,连接组蛋白(H1)是真核细胞染色质中存在的五种主要组蛋白蛋白家族之一。H1 与核小体结合,形成后生动物染色质的下一个结构单元,即染色质小体,这可能有助于染色质折叠成更高阶的结构。尽管连接组蛋白在调节染色质的结构和功能方面发挥着重要作用,但它们并没有像核心组蛋白那样得到广泛研究。然而,最近已经取得了实质性的进展。第一个接近原子分辨率的染色质小体核心颗粒晶体结构和一个 30nm 核小体阵列的 11Å 分辨率冷冻电镜衍生结构已经被确定,揭示了连接组蛋白与核小体相互作用以及组织高阶染色质结构的前所未有的细节。此外,还发现了连接组蛋白的几个新功能,包括其在表观遗传调控以及 DNA 复制、DNA 修复和基因组稳定性调节中的作用。对 H1 在这些过程中的作用的分子机制的研究表明,连接组蛋白的功能超越了其在染色质中的结构作用的新范例。