Division of Oncology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
McDonnell Genome Institute, Forest Park Avenue, Washington University School of Medicine, St. Louis, MO, 63108, USA.
Genome Med. 2019 Aug 28;11(1):56. doi: 10.1186/s13073-019-0666-2.
Neoantigens are newly formed peptides created from somatic mutations that are capable of inducing tumor-specific T cell recognition. Recently, researchers and clinicians have leveraged next generation sequencing technologies to identify neoantigens and to create personalized immunotherapies for cancer treatment. To create a personalized cancer vaccine, neoantigens must be computationally predicted from matched tumor-normal sequencing data, and then ranked according to their predicted capability in stimulating a T cell response. This candidate neoantigen prediction process involves multiple steps, including somatic mutation identification, HLA typing, peptide processing, and peptide-MHC binding prediction. The general workflow has been utilized for many preclinical and clinical trials, but there is no current consensus approach and few established best practices. In this article, we review recent discoveries, summarize the available computational tools, and provide analysis considerations for each step, including neoantigen prediction, prioritization, delivery, and validation methods. In addition to reviewing the current state of neoantigen analysis, we provide practical guidance, specific recommendations, and extensive discussion of critical concepts and points of confusion in the practice of neoantigen characterization for clinical use. Finally, we outline necessary areas of development, including the need to improve HLA class II typing accuracy, to expand software support for diverse neoantigen sources, and to incorporate clinical response data to improve neoantigen prediction algorithms. The ultimate goal of neoantigen characterization workflows is to create personalized vaccines that improve patient outcomes in diverse cancer types.
新抗原是由体细胞突变产生的新肽,能够诱导肿瘤特异性 T 细胞识别。最近,研究人员和临床医生利用下一代测序技术来鉴定新抗原,并为癌症治疗创造个性化的免疫疗法。为了创建个性化的癌症疫苗,必须从匹配的肿瘤-正常测序数据中计算预测新抗原,然后根据其刺激 T 细胞反应的预测能力进行排序。这个候选新抗原预测过程涉及多个步骤,包括体细胞突变识别、HLA 分型、肽处理和肽-MHC 结合预测。一般工作流程已用于许多临床前和临床试验,但目前没有共识方法,也没有既定的最佳实践。在本文中,我们回顾了最近的发现,总结了可用的计算工具,并对每个步骤提供了分析注意事项,包括新抗原预测、优先级排序、递呈和验证方法。除了回顾新抗原分析的现状外,我们还提供了实用的指导、具体的建议,并对新抗原特征分析在临床应用中的关键概念和混淆点进行了广泛的讨论。最后,我们概述了必要的发展领域,包括需要提高 HLA Ⅱ类分型的准确性、扩大软件对不同新抗原来源的支持,以及纳入临床反应数据以改进新抗原预测算法。新抗原特征分析工作流程的最终目标是创建个性化疫苗,以改善不同癌症类型患者的预后。