Suppr超能文献

衡量空气污染流行病学中因果关系证据的最佳实践。

Best Practices for Gauging Evidence of Causality in Air Pollution Epidemiology.

作者信息

Dominici Francesca, Zigler Corwin

机构信息

Department of Biostatistics, Harvard H.T. Chan School of Public Health, Boston, Massachusetts.

出版信息

Am J Epidemiol. 2017 Dec 15;186(12):1303-1309. doi: 10.1093/aje/kwx307.

Abstract

The contentious political climate surrounding air pollution regulations has brought some researchers and policy-makers to argue that evidence of causality is necessary before implementing more stringent regulations. Recently, investigators in an increasing number of air pollution studies have purported to have used "causal analysis," generating the impression that studies not explicitly labeled as such are merely "associational" and therefore less rigorous. Using 3 prominent air pollution studies as examples, we review good practices for how to critically evaluate the extent to which an air pollution study provides evidence of causality. We argue that evidence of causality should be gauged by a critical evaluation of design decisions such as 1) what actions or exposure levels are being compared, 2) whether an adequate comparison group was constructed, and 3) how closely these design decisions approximate an idealized randomized study. We argue that air pollution studies that are more scientifically rigorous in terms of the decisions made to approximate a randomized experiment are more likely to provide evidence of causality and should be prioritized among the body of evidence for regulatory review accordingly. Our considerations, although presented in the context of air pollution epidemiology, can be broadly applied to other fields of epidemiology.

摘要

围绕空气污染法规的政治气候充满争议,这使得一些研究人员和政策制定者认为,在实施更严格的法规之前,因果关系的证据是必要的。最近,越来越多的空气污染研究中的调查人员声称使用了“因果分析”,给人一种印象,即没有明确标明使用因果分析的研究仅仅是“关联性的”,因此不够严谨。我们以3项著名的空气污染研究为例,回顾如何批判性地评估空气污染研究在多大程度上提供了因果关系证据的良好做法。我们认为,因果关系的证据应该通过对设计决策的批判性评估来衡量,例如:1)正在比较哪些行动或暴露水平;2)是否构建了一个足够的对照组;3)这些设计决策与理想化的随机研究的接近程度。我们认为,在为近似随机实验所做的决策方面,更具科学严谨性的空气污染研究更有可能提供因果关系的证据,因此在监管审查的证据体系中应被优先考虑。我们的考量虽然是在空气污染流行病学的背景下提出的,但可以广泛应用于流行病学的其他领域。

相似文献

引用本文的文献

7
Observational studies: practical tips for avoiding common statistical pitfalls.观察性研究:避免常见统计陷阱的实用技巧。
Lancet Reg Health Southeast Asia. 2024 May 9;25:100415. doi: 10.1016/j.lansea.2024.100415. eCollection 2024 Jun.

本文引用的文献

1
The role of counterfactual theory in causal reasoning.反事实理论在因果推理中的作用。
Ann Epidemiol. 2016 Oct;26(10):681-682. doi: 10.1016/j.annepidem.2016.08.017. Epub 2016 Aug 31.
9
Science and regulation. Particulate matter matters.科学与监管。颗粒物不容忽视。
Science. 2014 Apr 18;344(6181):257-9. doi: 10.1126/science.1247348.
10
Six persistent research misconceptions.六个持续存在的研究误区。
J Gen Intern Med. 2014 Jul;29(7):1060-4. doi: 10.1007/s11606-013-2755-z. Epub 2014 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验