Suppr超能文献

可浸出的含咪唑基复合体制备用于破坏细菌聚集体、胞外多糖基质组装和增强生物膜去除。

Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal.

机构信息

Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania , 240 South 40th Street, Levy Building Room 417, Philadelphia, Pennsylvania 19104, United States.

Dentsply Sirona , 38 West Clarke Avenue, Milford, Delaware 19963, United States.

出版信息

ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38270-38280. doi: 10.1021/acsami.7b11558. Epub 2017 Oct 25.

Abstract

Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (∼2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABR-MC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear stress, while most of the biofilm biomass remained on the control surface. Altogether, we demonstrate a new nonleachable antibacterial composite with excellent antibiofilm activity without affecting its mechanical properties, which may serve as a platform for development of alternative antifouling biomaterials.

摘要

在固体表面生长的细菌和细胞外多聚物基质的产生会调节高度凝聚和牢固附着的生物膜的组装,使其难以从固体表面去除。抑制细胞生长和失活产生基质的细菌会损害生物膜的形成并促进其去除。在这里,我们通过使用高效但简化的化学方法,将可聚合的含咪唑基树脂(带碳酸酯键的抗菌树脂;ABR-C)直接掺入甲基丙烯酸酯基支架(ABR 修饰复合材料;ABR-MC)中,开发了一种具有强大抗生物膜活性的新型不可浸出抗菌复合材料。咪唑基部分的低剂量包含(约 2wt%)导致生物活性,细胞毒性最小,而不会损害修复材料的机械完整性。使用实验性生物膜模型中的一种胞外多糖基质产生(EPS 基质产生)口腔病原体(变形链球菌)评估 ABR-MC 的抗生物膜特性。使用高分辨率共聚焦荧光成像和生物物理方法,我们观察到 ABR-MC 表面上细菌积累的明显破坏和 3D 基质结构的缺陷。具体而言,抗菌复合材料损害了 S. mutans 在表面上形成有组织的细菌聚集体的能力,导致生物膜结构发生改变,细胞积累稀疏,EPS 基质减少(与对照复合材料相比)。对照复合材料上的生物膜拓扑分析显示出高度有组织的和网状的 EPS 结构,将细菌聚集体彼此和与表面连接起来,形成高度凝聚的单元。相比之下,ABR-MC 表面上没有这种结构化的基质,主要是稀疏和无定形的 EPS,表明生物膜物理稳定性受到破坏。与结构组织的缺乏一致,在 ABR-MC 表面上的有缺陷的生物膜在受到低剪切应力时很容易脱落,而大部分生物膜生物量仍留在对照表面上。总的来说,我们展示了一种具有出色抗生物膜活性的新型不可浸出抗菌复合材料,而不会影响其机械性能,这可能为开发替代防污生物材料提供了一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验