Suppr超能文献

机器人协同优化设计中形态与控制之间的权衡。

The trade-off between morphology and control in the co-optimized design of robots.

作者信息

Rosendo Andre, von Atzigen Marco, Iida Fumiya

机构信息

Department of Engineering, The University of Cambridge, Cambridge, United Kingdom.

School of Information Science and Technology, ShanghaiTech University, Shanghai, China.

出版信息

PLoS One. 2017 Oct 12;12(10):e0186107. doi: 10.1371/journal.pone.0186107. eCollection 2017.

Abstract

Conventionally, robot morphologies are developed through simulations and calculations, and different control methods are applied afterwards. Assuming that simulations and predictions are simplified representations of our reality, how sure can roboticists be that the chosen morphology is the most adequate for the possible control choices in the real-world? Here we study the influence of the design parameters in the creation of a robot with a Bayesian morphology-control (MC) co-optimization process. A robot autonomously creates child robots from a set of possible design parameters and uses Bayesian Optimization (BO) to infer the best locomotion behavior from real world experiments. Then, we systematically change from an MC co-optimization to a control-only (C) optimization, which better represents the traditional way that robots are developed, to explore the trade-off between these two methods. We show that although C processes can greatly improve the behavior of poor morphologies, such agents are still outperformed by MC co-optimization results with as few as 25 iterations. Our findings, on one hand, suggest that BO should be used in the design process of robots for both morphological and control parameters to reach optimal performance, and on the other hand, point to the downfall of current design methods in face of new search techniques.

摘要

传统上,机器人形态是通过模拟和计算来开发的,随后应用不同的控制方法。假设模拟和预测是对现实的简化表示,机器人专家如何确定所选的形态对于现实世界中可能的控制选择是最合适的呢?在这里,我们通过贝叶斯形态控制(MC)协同优化过程来研究设计参数对机器人创建的影响。一个机器人从一组可能的设计参数中自主创建子机器人,并使用贝叶斯优化(BO)从真实世界实验中推断出最佳的运动行为。然后,我们系统地从MC协同优化转变为仅控制(C)优化,后者更能代表传统的机器人开发方式,以探索这两种方法之间的权衡。我们表明,尽管C过程可以极大地改善不良形态的行为,但与MC协同优化结果相比,即使只有25次迭代,这些代理仍然表现较差。我们的研究结果一方面表明,在机器人的设计过程中,应将BO用于形态和控制参数,以达到最佳性能;另一方面,也指出了当前设计方法在面对新搜索技术时的不足之处。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c102/5638323/948e51867da4/pone.0186107.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验