School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT) , 2 George Street, Brisbane, QLD 4000, Australia.
Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT) , Engesserstr. 18, 76131 Karlsruhe, Germany.
J Am Chem Soc. 2017 Nov 8;139(44):15812-15820. doi: 10.1021/jacs.7b08047. Epub 2017 Oct 25.
The wavelength-dependent conversion of two rapid photoinduced ligation reactions, i.e., the light activation of o-methylbenzaldehydes, leading to the formation of reactive o-quinodimethanes (photoenols), and the photolysis of 2,5-diphenyltetrazoles, affording highly reactive nitrile imines, is probed via a monochromatic wavelength scan at constant photon count. The transient species are trapped by cycloaddition with N-ethylmaleimide, and the reactions are traced by high resolution mass spectrometry and nuclear magnetic resonance spectroscopy. The resulting action plots are assessed in the context of Beer-Lambert's law and provide combined with time-dependent density functional theory and multireference calculations an in-depth understanding of the underpinning mechanistic processes, including conical intersections. The π → π* transition of the carbonyl group of the o-methylbenzaldehyde correlates with a highly efficient conversion to the cycloadduct, showing no significant wavelength dependence, while conversion following the n → π* transition proceeds markedly less efficient at longer wavelengths. The influence of absorbance and reactivity has critical consequences for an effective reaction design: At high concentrations of o-methylbenzaldehydes (c = 8 mmol L), photoligations with N-ethylmaleimide (possible for λ ≤ 390 nm) are ideally performed at 330 nm, whereas at high light penetration regimes at lower concentrations (c = 0.3 mmol L), 315 nm irradiation leads to the highest conversion. Activation and trapping of 2,5-diphenyltetrazoles (possible for λ ≤ 322 nm) proceeds best at a wavelength shorter than 295 nm, irrespective of concentration.
通过在恒定光子计数下进行单色波长扫描,研究了两种快速光诱导连接反应(即光激活邻甲基苯甲醛,形成反应性邻醌二亚甲基(光酚),以及 2,5-二苯基四唑的光解,产生高反应性的腈亚胺)的波长依赖性转化。瞬态物种通过与 N-乙基马来酰亚胺的环加成被捕获,并通过高分辨率质谱和核磁共振波谱追踪反应。根据比尔-朗伯定律评估所得作用图,并结合时间依赖密度泛函理论和多参考计算,深入了解基础机械过程,包括锥形交叉。邻甲基苯甲醛羰基的π→π跃迁与高效转化为环加成物相关,没有明显的波长依赖性,而 n→π跃迁后的转化在较长波长下效率显著降低。吸光度和反应性的影响对有效反应设计具有关键影响:在邻甲基苯甲醛高浓度(c = 8 mmol L)下,与 N-乙基马来酰亚胺的光连接(λ≤390nm 时可能发生)理想情况下在 330nm 下进行,而在较低浓度下(c = 0.3 mmol L)的高透光率下,315nm 照射导致最高转化率。2,5-二苯基四唑的激活和捕获(λ≤322nm 时可能发生)无论浓度如何,在短于 295nm 的波长下进行得最好。