School of Biological Sciences, University of Auckland, 3a Symonds St, Auckland, 1010, New Zealand.
Institute of Sport, Exercise and Active Living, Victoria University, Melbourne, VIC, Australia.
Sci Rep. 2017 Oct 12;7(1):13107. doi: 10.1038/s41598-017-13454-5.
Bumblebees (Bombus terrestris) fly at low ambient temperatures where other insects cannot, and to do so they must pre-warm their flight muscles. While some have proposed mechanisms, none fully explain how pre-flight thermogenesis occurs. Here, we present a novel hypothesis based on the less studied mitochondrial glycerol 3-phosphate dehydrogenase pathway (mGPDH). Using calorimetry, and high resolution respirometry coupled with fluorimetry, we report substrate oxidation by mGPDH in permeabilised flight muscles operates, in vitro, at a high flux, even in the absence of ADP. This may be facilitated by an endogenous, mGPDH-mediated uncoupling of mitochondria. This uncoupling increases ETS activity, which results in increased heat release. Furthermore, passive regulation of this mechanism is achieved via dampened temperature sensitivity of mGPDH relative to other respiratory pathways, and subsequent consumption of its substrate, glycerol 3-phosphate (G3P), at low temperatures. Mitochondrial GPDH may therefore facilitate pre-flight thermogenesis through poor mitochondrial coupling. We calculate this can occur at a sufficient rate to warm flight muscles until shivering commences, and until flight muscle function is adequate for bumblebees to fly in the cold.
熊蜂(Bombus terrestris)在环境温度较低的情况下飞行,而其他昆虫则无法飞行,为了做到这一点,它们必须预先加热飞行肌肉。虽然已经提出了一些机制,但没有一个机制能完全解释预飞行生热是如何发生的。在这里,我们提出了一个基于较少研究的线粒体甘油-3-磷酸脱氢酶途径(mGPDH)的新假设。我们使用量热法和高分辨率呼吸测量法与荧光法相结合,报告了在通透化的飞行肌肉中,mGPDH 对底物的氧化作用在体外以高通量进行,即使在没有 ADP 的情况下也是如此。这可能是由 mGPDH 介导的线粒体解偶联作用促进的。这种解偶联作用增加了 ETS 的活性,从而导致热量释放增加。此外,通过使 mGPDH 相对于其他呼吸途径的温度敏感性降低,以及随后在低温下消耗其底物甘油-3-磷酸(G3P),可以实现对这种机制的被动调节。因此,线粒体 GPDH 可以通过较差的线粒体偶联来促进预飞行生热。我们计算出,这种解偶联作用的发生速度足以使飞行肌肉升温,直到开始颤抖,并且使飞行肌肉的功能足以使熊蜂在寒冷中飞行。