文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

宏基因组样本的无偏分类注释

Unbiased Taxonomic Annotation of Metagenomic Samples.

作者信息

Fosso Bruno, Pesole Graziano, Rosselló Francesc, Valiente Gabriel

机构信息

1 Institute of Biomembranes and Bioenergetics , Consiglio Nazionale delle Ricerche, Bari, Italy .

2 Department of Mathematics and Computer Science, Balearic Islands Health Research Institute (IdISBa), University of the Balearic Islands , Palma de Mallorca, Spain .

出版信息

J Comput Biol. 2018 Mar;25(3):348-360. doi: 10.1089/cmb.2017.0144. Epub 2017 Oct 13.


DOI:10.1089/cmb.2017.0144
PMID:29028181
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5865273/
Abstract

The classification of reads from a metagenomic sample using a reference taxonomy is usually based on first mapping the reads to the reference sequences and then classifying each read at a node under the lowest common ancestor of the candidate sequences in the reference taxonomy with the least classification error. However, this taxonomic annotation can be biased by an imbalanced taxonomy and also by the presence of multiple nodes in the taxonomy with the least classification error for a given read. In this article, we show that the Rand index is a better indicator of classification error than the often used area under the receiver operating characteristic (ROC) curve and F-measure for both balanced and imbalanced reference taxonomies, and we also address the second source of bias by reducing the taxonomic annotation problem for a whole metagenomic sample to a set cover problem, for which a logarithmic approximation can be obtained in linear time and an exact solution can be obtained by integer linear programming. Experimental results with a proof-of-concept implementation of the set cover approach to taxonomic annotation in a next release of the TANGO software show that the set cover approach further reduces ambiguity in the taxonomic annotation obtained with TANGO without distorting the relative abundance profile of the metagenomic sample.

摘要

使用参考分类法对宏基因组样本中的 reads 进行分类,通常是先将 reads 映射到参考序列,然后在参考分类法中候选序列的最低共同祖先下的节点处,以分类错误最小的方式对每个 reads 进行分类。然而,这种分类注释可能会受到不平衡分类法的影响,也会受到分类法中存在多个节点的影响,对于给定的 reads,这些节点的分类错误最小。在本文中,我们表明,对于平衡和不平衡的参考分类法,兰德指数比常用的受试者工作特征(ROC)曲线下面积和 F 度量更能作为分类错误的指标,并且我们还通过将整个宏基因组样本的分类注释问题简化为集合覆盖问题来解决第二个偏差来源,对于该问题,可以在线性时间内获得对数近似值,并通过整数线性规划获得精确解。在 TANGO 软件的下一个版本中,使用集合覆盖方法进行分类注释的概念验证实现的实验结果表明,集合覆盖方法在不扭曲宏基因组样本相对丰度分布的情况下,进一步减少了用 TANGO 获得的分类注释中的模糊性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/48b23479f627/fig-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/43ff631edf37/fig-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/aca9923bd3b6/fig-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/48b23479f627/fig-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/43ff631edf37/fig-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/aca9923bd3b6/fig-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bfd/5865273/48b23479f627/fig-3.jpg

相似文献

[1]
Unbiased Taxonomic Annotation of Metagenomic Samples.

J Comput Biol. 2018-3

[2]
MetaCluster-TA: taxonomic annotation for metagenomic data based on assembly-assisted binning.

BMC Genomics. 2014-1-24

[3]
Selection of marker genes for genetic barcoding of microorganisms and binning of metagenomic reads by Barcoder software tools.

BMC Bioinformatics. 2018-8-30

[4]
Re-purposing software for functional characterization of the microbiome.

Microbiome. 2021-1-9

[5]
Exploiting topic modeling to boost metagenomic reads binning.

BMC Bioinformatics. 2015

[6]
Comprehensive benchmarking and ensemble approaches for metagenomic classifiers.

Genome Biol. 2017-9-21

[7]
Metagenome Assembly and Contig Assignment.

Methods Mol Biol. 2018

[8]
IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences.

Microbiome. 2018-8-9

[9]
Accurate taxonomic assignment of short pyrosequencing reads.

Pac Symp Biocomput. 2010

[10]
Joining Illumina paired-end reads for classifying phylogenetic marker sequences.

BMC Bioinformatics. 2020-3-14

引用本文的文献

[1]
Diversity analysis of the endosymbiotic bacterial community in field-collected Haemaphysalis ticks on the tropical Hainan Island, China.

Folia Parasitol (Praha). 2023-6-2

[2]
Extension of the shelf-life of fresh pasta using modified atmosphere packaging and bioprotective cultures.

Front Microbiol. 2022-9-2

[3]
Evaluating the Efficiency of DNA Metabarcoding to Analyze the Diet of (Teleostea: Syngnathidae).

Life (Basel). 2021-9-22

[4]
Improved sequence-based prediction of interaction sites in α-helical transmembrane proteins by deep learning.

Comput Struct Biotechnol J. 2021-3-9

[5]
Genome-resolved metagenomics using environmental and clinical samples.

Brief Bioinform. 2021-9-2

[6]
Accurate quantification of bacterial abundance in metagenomic DNAs accounting for variable DNA integrity levels.

Microb Genom. 2020-10

[7]
No metagenomic evidence of tumorigenic viruses in cancers from a selected cohort of immunosuppressed subjects.

Sci Rep. 2019-12-24

本文引用的文献

[1]
MetaShot: an accurate workflow for taxon classification of host-associated microbiome from shotgun metagenomic data.

Bioinformatics. 2017-6-1

[2]
ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data.

Mol Biol Evol. 2016-6

[3]
Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation.

Nucleic Acids Res. 2016-1-4

[4]
BioMaS: a modular pipeline for Bioinformatic analysis of Metagenomic AmpliconS.

BMC Bioinformatics. 2015-7-1

[5]
Type material in the NCBI Taxonomy Database.

Nucleic Acids Res. 2015-1

[6]
Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences.

PeerJ. 2014-8-21

[7]
Ribosomal Database Project: data and tools for high throughput rRNA analysis.

Nucleic Acids Res. 2013-11-27

[8]
Microbial community analysis using MEGAN.

Methods Enzymol. 2013

[9]
Advancing our understanding of the human microbiome using QIIME.

Methods Enzymol. 2013

[10]
Further steps in TANGO: improved taxonomic assignment in metagenomics.

Bioinformatics. 2013-5-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索