Suppr超能文献

在混合分子器件中实现纯自旋电流的光转换。

Optical conversion of pure spin currents in hybrid molecular devices.

机构信息

School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.

Department of Physics, Sultan Qaboos University, PO Box 36, Muscat, 123, Oman.

出版信息

Nat Commun. 2017 Oct 13;8(1):926. doi: 10.1038/s41467-017-01034-0.

Abstract

Carbon-based molecules offer unparalleled potential for THz and optical devices controlled by pure spin currents: a low-dissipation flow of electronic spins with no net charge displacement. However, the research so far has been focused on the electrical conversion of the spin imbalance, where molecular materials are used to mimic their crystalline counterparts. Here, we use spin currents to access the molecular dynamics and optical properties of a fullerene layer. The spin mixing conductance across Py/C interfaces is increased by 10% (5 × 10 m) under optical irradiation. Measurements show up to a 30% higher light absorbance and a factor of 2 larger photoemission during spin pumping. We also observe a 0.15 THz slowdown and a narrowing of the vibrational peaks. The effects are attributed to changes in the non-radiative damping and energy transfer. This opens new research paths in hybrid magneto-molecular optoelectronics, and the optical detection of spin physics in these materials.Carbon-based molecules could prove useful in terahertz and optical devices controlled by pure spin currents. Here, conversely, the authors use spin currents to probe molecular dynamics and enhance the optical response of a fullerene layer, enabling hybrid magneto-molecular optoelectronic devices.

摘要

碳基分子在由纯自旋电流控制的太赫兹和光学器件方面具有无与伦比的潜力

这是一种没有净电荷位移的电子自旋低损耗流动。然而,到目前为止,研究主要集中在自旋不平衡的电转换上,其中分子材料被用来模拟它们的晶态对应物。在这里,我们使用自旋流来访问富勒烯层的分子动力学和光学性质。在光学辐照下,Py/C 界面处的自旋混合电导增加了 10%(5×10^-6 S)。测量结果显示,在自旋泵浦过程中,光吸收率提高了 30%,光发射率提高了 2 倍。我们还观察到 0.15 THz 的速度降低和振动峰的变窄。这些效应归因于非辐射阻尼和能量转移的变化。这为混合磁-分子光电学开辟了新的研究途径,并为这些材料中的自旋物理的光学检测提供了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cebe/5640639/e415507fc7ed/41467_2017_1034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验