Suppr超能文献

用于3D植物茎干重建的快速高分辨率体素雕刻

Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction.

作者信息

Scharr Hanno, Briese Christoph, Embgenbroich Patrick, Fischbach Andreas, Fiorani Fabio, Müller-Linow Mark

机构信息

Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

Front Plant Sci. 2017 Sep 28;8:1680. doi: 10.3389/fpls.2017.01680. eCollection 2017.

Abstract

Volume carving is a well established method for visual hull reconstruction and has been successfully applied in plant phenotyping, especially for 3d reconstruction of small plants and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm), well known implementations become slow or have prohibitively large memory needs. Here we present and evaluate a computationally efficient algorithm for volume carving, allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid representation called "Octree" with an efficient image region integration scheme called "Integral image." Speedup with respect to less efficient octree implementations is about 2 orders of magnitude, due to the introduced refinement strategy "Mark and refine." Speedup is about a factor 1.6 compared to a highly optimized GPU implementation using equidistant voxel grids, even without using any parallelization. We demonstrate the application of this method for trait derivation of banana and maize plants.

摘要

体素雕刻是一种成熟的视觉外壳重建方法,已成功应用于植物表型分析,特别是用于小植株和种子的三维重建。当以相对较高的空间分辨率(≤1毫米)对较大植株进行成像时,已知的实现方法会变得很慢,或者内存需求大得令人望而却步。在此,我们提出并评估一种计算效率高的体素雕刻算法,例如可用于植物枝条的三维重建。它将一种名为“八叉树”的知名多网格表示法与一种名为“积分图像”的高效图像区域积分方案相结合。由于引入了“标记与细化”的细化策略,相对于效率较低的八叉树实现方法,速度提高了约2个数量级。即使不使用任何并行化,与使用等距体素网格的高度优化的GPU实现方法相比,速度也提高了约1.6倍。我们展示了该方法在香蕉和玉米植株性状推导中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c40/5625571/cbcdf50b8d93/fpls-08-01680-g0001.jpg

相似文献

1
Fast High Resolution Volume Carving for 3D Plant Shoot Reconstruction.
Front Plant Sci. 2017 Sep 28;8:1680. doi: 10.3389/fpls.2017.01680. eCollection 2017.
2
Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
Front Plant Sci. 2020 Dec 9;11:521431. doi: 10.3389/fpls.2020.521431. eCollection 2020.
3
Fast 3D iterative image reconstruction for SPECT with rotating slat collimators.
Phys Med Biol. 2009 Feb 7;54(3):715-29. doi: 10.1088/0031-9155/54/3/016. Epub 2009 Jan 9.
4
A System for In-Line 3D Inspection without Hidden Surfaces.
Sensors (Basel). 2018 Sep 7;18(9):2993. doi: 10.3390/s18092993.
5
A Fully GPU-Based Ray-Driven Backprojector via a Ray-Culling Scheme with Voxel-Level Parallelization for Cone-Beam CT Reconstruction.
Technol Cancer Res Treat. 2015 Dec;14(6):709-20. doi: 10.7785/tcrt.2012.500429. Epub 2014 Nov 26.
7
3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies.
Front Plant Sci. 2016 Jun 7;7:745. doi: 10.3389/fpls.2016.00745. eCollection 2016.
8
Voxel carving-based 3D reconstruction of sorghum identifies genetic determinants of light interception efficiency.
Plant Direct. 2020 Oct 7;4(10):e00255. doi: 10.1002/pld3.255. eCollection 2020 Oct.
9
Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA.
Med Phys. 2011 Dec;38(12):6775-86. doi: 10.1118/1.3661998.
10

引用本文的文献

1
A 3D reconstruction platform for complex plants using OB-NeRF.
Front Plant Sci. 2025 Mar 10;16:1449626. doi: 10.3389/fpls.2025.1449626. eCollection 2025.
2
Toward an Automated System for Nondestructive Estimation of Plant Biomass.
Plant Direct. 2025 Mar 19;9(3):e70043. doi: 10.1002/pld3.70043. eCollection 2025 Mar.
6
A Mobile NMR Sensor and Relaxometric Method to Non-destructively Monitor Water and Dry Matter Content in Plants.
Front Plant Sci. 2021 Feb 5;12:617768. doi: 10.3389/fpls.2021.617768. eCollection 2021.
7
Leveraging Image Analysis to Compute 3D Plant Phenotypes Based on Voxel-Grid Plant Reconstruction.
Front Plant Sci. 2020 Dec 9;11:521431. doi: 10.3389/fpls.2020.521431. eCollection 2020.
8
Voxel carving-based 3D reconstruction of sorghum identifies genetic determinants of light interception efficiency.
Plant Direct. 2020 Oct 7;4(10):e00255. doi: 10.1002/pld3.255. eCollection 2020 Oct.
10
Measuring crops in 3D: using geometry for plant phenotyping.
Plant Methods. 2019 Sep 3;15:103. doi: 10.1186/s13007-019-0490-0. eCollection 2019.

本文引用的文献

1
2
phenoSeeder - A Robot System for Automated Handling and Phenotyping of Individual Seeds.
Plant Physiol. 2016 Nov;172(3):1358-1370. doi: 10.1104/pp.16.01122. Epub 2016 Sep 23.
4
3D Surface Reconstruction of Plant Seeds by Volume Carving: Performance and Accuracies.
Front Plant Sci. 2016 Jun 7;7:745. doi: 10.3389/fpls.2016.00745. eCollection 2016.
7
The leaf angle distribution of natural plant populations: assessing the canopy with a novel software tool.
Plant Methods. 2015 Feb 26;11:11. doi: 10.1186/s13007-015-0052-z. eCollection 2015.
8
Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis.
Plant Cell. 2014 Dec;26(12):4636-55. doi: 10.1105/tpc.114.129601. Epub 2014 Dec 11.
10
Field high-throughput phenotyping: the new crop breeding frontier.
Trends Plant Sci. 2014 Jan;19(1):52-61. doi: 10.1016/j.tplants.2013.09.008. Epub 2013 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验