Suppr超能文献

迈向植物生物量无损估计的自动化系统。

Toward an Automated System for Nondestructive Estimation of Plant Biomass.

作者信息

Kliman Randall, Huang Yuankai, Zhao Ye, Chen Yongsheng

机构信息

School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta Georgia USA.

School of Civil and Environmental Engineering Georgia Institute of Technology Atlanta Georgia USA.

出版信息

Plant Direct. 2025 Mar 19;9(3):e70043. doi: 10.1002/pld3.70043. eCollection 2025 Mar.

Abstract

Accurate and nondestructive estimation of plant biomass is crucial for optimizing plant productivity, but existing methods are often expensive and require complex experimental setups. To address this challenge, we developed an automated system for estimating plant root and shoot biomass over the plant's lifecycle in hydroponic systems. This system employs a robotic arm and turntable to capture 40 images at equidistant angles around a hydroponically grown lettuce plant. These images are then processed into silhouettes and used in voxel-based volumetric 3D reconstruction to produce detailed 3D models. We utilize a space carving method along with a raytracing-based optical correction technique to create high-accuracy reconstructions. Analysis of these models demonstrates that our system accurately reconstructs the plant root structure and provides precise measurements of root volume, which can be calibrated to indicate biomass.

摘要

准确且无损地估算植物生物量对于优化植物生产力至关重要,但现有方法通常成本高昂且需要复杂的实验设置。为应对这一挑战,我们开发了一种自动化系统,用于在水培系统中估算植物整个生命周期内的根和地上部分生物量。该系统采用机械臂和转盘,以等距角度围绕水培生菜植株拍摄40张图像。然后将这些图像处理成轮廓,并用于基于体素的体积三维重建,以生成详细的三维模型。我们利用空间雕刻方法以及基于光线追踪的光学校正技术来创建高精度重建。对这些模型的分析表明,我们的系统能够准确重建植物根系结构,并提供根体积的精确测量值,该测量值可校准以指示生物量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验