Suppr超能文献

使用贝叶斯张量分解方法对转录因子组合相互作用进行综合分析

Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach.

作者信息

Ye Yusen, Gao Lin, Zhang Shihua

机构信息

School of Computer Science and Technology, Xidian University, Xi'an, China.

NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China.

出版信息

Front Genet. 2017 Sep 28;8:140. doi: 10.3389/fgene.2017.00140. eCollection 2017.

Abstract

Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions.

摘要

转录因子通过组合相互作用在基因的转录调控和细胞身份的确定中发挥关键作用。然而,由于缺乏同一细胞环境中的实验数据以及数据噪声的广泛存在,目前关于组合调控的研究存在不足。在此,我们采用贝叶斯CANDECOMP/PARAFAC(CP)分解方法(BCPF),以网络范式整合多个数据集,以确定精确的转录因子相互作用图谱。在我们的首次应用中,我们应用BCPF整合分别基于来自ENCODE的多个细胞系的不同数据集构建的三个网络,以预测一个全局且精确的转录因子相互作用网络。该网络给出了38种具有不同生物学功能的新型转录因子相互作用。在我们的第二次应用中,我们将BCPF应用于七种细胞类型的转录因子调控网络,并分别预测了七个细胞谱系的转录因子相互作用网络。通过进一步探索它们的动态性和模块化,我们发现细胞谱系特异性的枢纽转录因子通过与非特异性转录因子相互作用参与细胞类型或谱系特异性调控。此外,我们以癌症谱系和血液谱系的枢纽转录因子为例,阐述了它们的生物学功能。综上所述,我们的综合分析能够揭示关于人类转录因子组合相互作用更精确和广泛的描述。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验