Suppr超能文献

利用对大量门诊记录的回顾性分析挖掘共病模式。

Mining comorbidity patterns using retrospective analysis of big collection of outpatient records.

作者信息

Boytcheva Svetla, Angelova Galia, Angelov Zhivko, Tcharaktchiev Dimitar

机构信息

Institute of Information and Communication Technologies, Bulgarian Academy of Sciences, Sofia, Bulgaria.

Adiss Lab Ltd, Sofia, Bulgaria.

出版信息

Health Inf Sci Syst. 2017 Sep 28;5(1):3. doi: 10.1007/s13755-017-0024-y. eCollection 2017 Dec.

Abstract

BACKGROUND

Studying comorbidities of disorders is important for detection and prevention. For discovering frequent patterns of diseases we can use retrospective analysis of population data, by filtering events with common properties and similar significance. Most frequent pattern mining methods do not consider contextual information about extracted patterns. Further data mining developments might enable more efficient applications in specific tasks like comorbidities identification.

METHODS

We propose a cascade data mining approach for frequent pattern mining enriched with context information, including a new algorithm MIxCO for maximal frequent patterns mining. Text mining tools extract entities from free text and deliver additional context attributes beyond the structured information about the patients.

RESULTS

The proposed approach was tested using pseudonymised reimbursement requests (outpatient records) submitted to the Bulgarian National Health Insurance Fund in 2010-2016 for more than 5 million citizens yearly. Experiments were run on 3 data collections. Some known comorbidities of Schizophrenia, Hyperprolactinemia and Diabetes Mellitus Type 2 are confirmed; novel hypotheses about stable comorbidities are generated. The evaluation shows that MIxCO is efficient for big dense datasets.

CONCLUSION

Explicating maximal frequent itemsets enables to build hypotheses concerning the relationships between the exogeneous and endogeneous factors triggering the formation of these sets. MixCO will help to identify risk groups of patients with a predisposition to develop socially-significant disorders like diabetes. This will turn static archives like the Diabetes Register in Bulgaria to a powerful alerting and predictive framework.

摘要

背景

研究疾病的共病情况对于疾病的检测和预防至关重要。为了发现常见的疾病模式,我们可以通过筛选具有共同属性和相似意义的事件,对人群数据进行回顾性分析。大多数频繁模式挖掘方法没有考虑所提取模式的上下文信息。进一步的数据挖掘发展可能会使在共病识别等特定任务中实现更高效的应用成为可能。

方法

我们提出一种用于频繁模式挖掘的级联数据挖掘方法,该方法丰富了上下文信息,包括一种用于最大频繁模式挖掘的新算法MIxCO。文本挖掘工具从自由文本中提取实体,并提供超出患者结构化信息的额外上下文属性。

结果

使用2010 - 2016年每年提交给保加利亚国家健康保险基金的500多万公民的匿名报销申请(门诊记录)对所提出的方法进行了测试。在3个数据集上进行了实验。证实了精神分裂症、高催乳素血症和2型糖尿病的一些已知共病情况;生成了关于稳定共病的新假设。评估表明,MIxCO对于大型密集数据集是有效的。

结论

阐明最大频繁项集有助于建立关于触发这些集合形成的外源性和内源性因素之间关系的假设。MixCO将有助于识别易患糖尿病等具有社会意义疾病的患者风险群体。这将把保加利亚糖尿病登记册等静态档案转变为一个强大的警报和预测框架。

相似文献

5
Apriori Versions Based on MapReduce for Mining Frequent Patterns on Big Data.基于 MapReduce 的频繁模式挖掘的先验版本。
IEEE Trans Cybern. 2018 Oct;48(10):2851-2865. doi: 10.1109/TCYB.2017.2751081. Epub 2017 Sep 27.
6
The Mining Algorithm of Maximum Frequent Itemsets Based on Frequent Pattern Tree.基于频繁模式树的最大频繁项集挖掘算法。
Comput Intell Neurosci. 2022 May 18;2022:7022168. doi: 10.1155/2022/7022168. eCollection 2022.
8
Discovering metric temporal constraint networks on temporal databases.发现时态数据库上的度量时态约束网络。
Artif Intell Med. 2013 Jul;58(3):139-54. doi: 10.1016/j.artmed.2013.03.006. Epub 2013 May 6.

引用本文的文献

7
Multi-level medical periodic patterns from human movement behaviors.来自人类运动行为的多层次医学周期性模式。
Health Inf Sci Syst. 2019 Apr 19;7(1):9. doi: 10.1007/s13755-019-0070-8. eCollection 2019 Dec.

本文引用的文献

2
Predicting Comorbid Conditions and Trajectories using Social Health Records.利用社会健康记录预测共病情况和疾病轨迹。
IEEE Trans Nanobioscience. 2016 Jun;15(4):371-379. doi: 10.1109/TNB.2016.2564299. Epub 2016 May 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验