Liang Ye, Guo Chonghui, Li Hailin
Institute of Systems Engineering, Dalian University of Technology, Dalian, Liaoning China.
College of Business Administration, Huaqiao University, Quanzhou, Fujian China.
Health Inf Sci Syst. 2024 Sep 12;12(1):48. doi: 10.1007/s13755-024-00307-5. eCollection 2024 Dec.
The study aims to identify distinct population-specific comorbidity progression patterns, timely detect potential comorbidities, and gain better understanding of the progression of comorbid conditions among patients.
This work presents a comorbidity progression analysis framework that utilizes temporal comorbidity networks (TCN) for patient stratification and comorbidity prediction. We propose a TCN construction approach that utilizes longitudinal, temporal diagnosis data of patients to construct their TCN. Subsequently, we employ the TCN for patient stratification by conducting preliminary analysis, and typical prescription analysis to uncover potential comorbidity progression patterns in different patient groups. Finally, we propose an innovative comorbidity prediction method by utilizing the distance-matched temporal comorbidity network (TCN-DM). This method identifies similar patients with disease prevalence and disease transition patterns and combines their diagnosis information with that of the current patient to predict potential comorbidity at the patient's next visit.
This study validated the capability of the framework using a real-world dataset MIMIC-III, with heart failure (HF) as interested disease to investigate comorbidity progression in HF patients. With TCN, this study can identify four significant distinctive HF subgroups, revealing the progression of comorbidities in patients. Furthermore, compared to other methods, TCN-DM demonstrated better predictive performance with F1-Score values ranging from 0.454 to 0.612, showcasing its superiority.
This study can identify comorbidity patterns for individuals and population, and offer promising prediction for future comorbidity developments in patients.
本研究旨在识别不同人群特有的共病进展模式,及时检测潜在的共病,并更好地了解患者中共病情况的进展。
本研究提出了一种共病进展分析框架,该框架利用时间共病网络(TCN)进行患者分层和共病预测。我们提出了一种TCN构建方法,利用患者的纵向、时间诊断数据构建他们的TCN。随后,我们通过进行初步分析和典型处方分析,利用TCN对患者进行分层,以发现不同患者群体中潜在的共病进展模式。最后,我们利用距离匹配时间共病网络(TCN-DM)提出了一种创新的共病预测方法。该方法识别具有疾病患病率和疾病转变模式的相似患者,并将他们的诊断信息与当前患者的诊断信息相结合,以预测患者下次就诊时的潜在共病。
本研究使用真实世界数据集MIMIC-III验证了该框架的能力,以心力衰竭(HF)作为感兴趣的疾病来研究HF患者的共病进展。通过TCN,本研究可以识别出四个显著不同的HF亚组,揭示患者中共病的进展情况。此外,与其他方法相比,TCN-DM表现出更好的预测性能,F1分数值在0.454至0.612之间,展示了其优越性。
本研究可以识别个体和人群的共病模式,并为患者未来共病的发展提供有前景的预测。