Suppr超能文献

结合基于图形和通量的结构来解析代谢网络中的表型必需代谢物。

Combining graph and flux-based structures to decipher phenotypic essential metabolites within metabolic networks.

作者信息

Laniau Julie, Frioux Clémence, Nicolas Jacques, Baroukh Caroline, Cortes Maria-Paz, Got Jeanne, Trottier Camille, Eveillard Damien, Siegel Anne

机构信息

Institut de Recherche en Informatique et Systèmes Aléatoires, Centre National de la Recherche Scientifique, Rennes, France.

DYLISS, Institut National de Recherche en Informatique et Automatique, Rennes, France.

出版信息

PeerJ. 2017 Oct 12;5:e3860. doi: 10.7717/peerj.3860. eCollection 2017.

Abstract

BACKGROUND

The emergence of functions in biological systems is a long-standing issue that can now be addressed at the cell level with the emergence of high throughput technologies for genome sequencing and phenotyping. The reconstruction of complete metabolic networks for various organisms is a key outcome of the analysis of these data, giving access to a global view of cell functioning. The analysis of metabolic networks may be carried out by simply considering the architecture of the reaction network or by taking into account the stoichiometry of reactions. In both approaches, this analysis is generally centered on the outcome of the network and considers all metabolic compounds to be equivalent in this respect. As in the case of genes and reactions, about which the concept of essentiality has been developed, it seems, however, that some metabolites play crucial roles in system responses, due to the cell structure or the internal wiring of the metabolic network.

RESULTS

We propose a classification of metabolic compounds according to their capacity to influence the activation of targeted functions (generally the growth phenotype) in a cell. We generalize the concept of essentiality to metabolites and introduce the concept of the (PEM) which influences the growth phenotype according to sustainability, producibility or optimal-efficiency criteria. We have developed and made available a tool, , which implements a method combining graph-based and flux-based analysis, two approaches that are usually considered separately. The identification of PEMs is made effective by using a logical programming approach.

CONCLUSION

The exhaustive study of phenotypic essential metabolites in six genome-scale metabolic models suggests that the combination and the comparison of graph, stoichiometry and optimal flux-based criteria allows some features of the metabolic network functionality to be deciphered by focusing on a small number of compounds. By considering the best combination of both graph-based and flux-based techniques, the python package advocates for a broader use of these compounds both to facilitate network curation and to promote a precise understanding of metabolic phenotype.

摘要

背景

生物系统中功能的出现是一个长期存在的问题,随着基因组测序和表型分析高通量技术的出现,现在可以在细胞水平上加以解决。重建各种生物体的完整代谢网络是这些数据分析的关键成果,有助于全面了解细胞功能。代谢网络分析可以通过简单考虑反应网络的架构或考虑反应的化学计量来进行。在这两种方法中,这种分析通常以网络的结果为中心,并且在这方面认为所有代谢化合物都是等效的。然而,正如在基因和反应方面已经提出了必需性的概念一样,由于细胞结构或代谢网络的内部连接,一些代谢物似乎在系统反应中起着关键作用。

结果

我们根据代谢化合物影响细胞中靶向功能(通常是生长表型)激活的能力提出了一种分类方法。我们将必需性的概念推广到代谢物,并引入了根据可持续性、可生产性或最优效率标准影响生长表型的(PEM)概念。我们开发并提供了一个工具,它实现了一种结合基于图和基于通量分析的方法,这两种方法通常是分开考虑的。通过使用逻辑编程方法有效地识别了PEM。

结论

对六个基因组规模代谢模型中表型必需代谢物的详尽研究表明,基于图、化学计量和最优通量标准的组合和比较,通过关注少量化合物,可以解读代谢网络功能的一些特征。通过考虑基于图和基于通量技术的最佳组合,python包提倡更广泛地使用这些化合物,以促进网络管理并促进对代谢表型的精确理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验