Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
Nucleic Acids Res. 2018 Jan 9;46(1):94-103. doi: 10.1093/nar/gkx933.
In the absence of a functioning centromere, chromosome segregation becomes aberrant, leading to an increased rate of aneuploidy. The highly specific recognition of centromeres by kinetochores suggests that specific structural characteristics define this region, however, the structural details and mechanism underlying this recognition remains a matter of intense investigation. To address this, high-speed atomic force microscopy was used for direct visualization of the spontaneous dynamics of CENP-A nucleosomes at the sub-second time scale. We report that CENP-A nucleosomes change conformation spontaneously and reversibly, utilizing two major pathways: unwrapping, and looping of the DNA; enabling core transfer between neighboring DNA substrates. Along with these nucleosome dynamics we observed that CENP-A stabilizes the histone core against dissociating to histone subunits upon unwrapping DNA, unique from H3 cores which are only capable of such plasticity in the presence of remodeling factors. These findings have implications for the dynamics and integrity of nucleosomes at the centromere.
在没有功能正常的着丝粒的情况下,染色体分离变得异常,导致非整倍体的发生率增加。动粒对着丝粒的高度特异性识别表明,特定的结构特征定义了这个区域,然而,这种识别的结构细节和机制仍然是一个深入研究的问题。为了解决这个问题,我们使用高速原子力显微镜在亚秒的时间尺度上直接观察 CENP-A 核小体的自发动力学。我们报告说,CENP-A 核小体自发且可逆地改变构象,利用两种主要途径:DNA 的解缠绕和环化;使相邻 DNA 底物之间的核心转移成为可能。除了这些核小体动力学,我们还观察到 CENP-A 在解开 DNA 时稳定核小体的核心,防止其与组蛋白亚基解离,这与 H3 核心不同,H3 核心只有在存在重塑因子的情况下才具有这种可塑性。这些发现对着丝粒处核小体的动力学和完整性具有重要意义。