Schoening Timm, Jones Daniel O B, Greinert Jens
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany.
National Oceanography Centre, Southampton, UK.
Sci Rep. 2017 Oct 17;7(1):13338. doi: 10.1038/s41598-017-13335-x.
Poly-metallic nodules are a marine resource considered for deep sea mining. Assessing nodule abundance is of interest for mining companies and to monitor potential environmental impact. Optical seafloor imaging allows quantifying poly-metallic nodule abundance at spatial scales from centimetres to square kilometres. Towed cameras and diving robots acquire high-resolution imagery that allow detecting individual nodules and measure their sizes. Spatial abundance statistics can be computed from these size measurements, providing e.g. seafloor coverage in percent and the nodule size distribution. Detecting nodules requires segmentation of nodule pixels from pixels showing sediment background. Semi-supervised pattern recognition has been proposed to automate this task. Existing nodule segmentation algorithms employ machine learning that trains a classifier to segment the nodules in a high-dimensional feature space. Here, a rapid nodule segmentation algorithm is presented. It omits computation-intense feature-based classification and employs image processing only. It exploits a nodule compactness heuristic to delineate individual nodules. Complex machine learning methods are avoided to keep the algorithm simple and fast. The algorithm has successfully been applied to different image datasets. These data sets were acquired by different cameras, camera platforms and in varying illumination conditions. Their successful analysis shows the broad applicability of the proposed method.
多金属结核是一种被考虑用于深海采矿的海洋资源。评估结核丰度对矿业公司以及监测潜在环境影响都具有重要意义。光学海底成像能够在从厘米到平方千米的空间尺度上对多金属结核丰度进行量化。拖曳式摄像机和潜水机器人可获取高分辨率图像,从而能够检测单个结核并测量其大小。通过这些大小测量值可以计算空间丰度统计数据,例如以百分比表示的海底覆盖率以及结核大小分布。检测结核需要将结核像素与显示沉积物背景的像素进行分割。已提出半监督模式识别来自动化这项任务。现有的结核分割算法采用机器学习,在高维特征空间中训练分类器来分割结核。在此,提出了一种快速结核分割算法。它省略了计算密集型的基于特征的分类,仅采用图像处理。它利用结核紧凑性启发式方法来勾勒出单个结核。避免使用复杂的机器学习方法以保持算法简单快速。该算法已成功应用于不同的图像数据集。这些数据集由不同的摄像机、摄像机平台在不同的光照条件下获取。它们的成功分析表明了所提方法的广泛适用性。