Suppr超能文献

稳健的解释监督可减少肺结节检测中的假阳性。

Robust explanation supervision for false positive reduction in pulmonary nodule detection.

机构信息

Department of Computer Science, Emory University, Atlanta, Georgia, USA.

Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia, USA.

出版信息

Med Phys. 2024 Mar;51(3):1687-1701. doi: 10.1002/mp.16937. Epub 2024 Jan 15.

Abstract

BACKGROUND

Lung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin-sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities.

PURPOSE

The standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error-prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection.

METHODS

A robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset are used for training, validation, and testing.

RESULTS

Using only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre-defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions.

CONCLUSIONS

A pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients.

摘要

背景

由于早期诊断缺乏症状,肺癌是美国最致命和第二常见的癌症。肺结节是小的异常区域,可能与肺癌的发生有关。早期发现这些结节至关重要,因为它可以显著提高患者的生存率。胸部薄层计算机断层扫描(CT)扫描已成为诊断和预测肺部异常的常用方法。

目的

检测肺结节的标准临床工作流程依赖于放射科医生来分析 CT 图像以评估癌性结节的风险因素。然而,由于各种结节形成的原因,如污染物和感染,这种方法可能会出现错误。深度学习(DL)算法最近在医学图像分类和分割方面取得了显著成功。作为结节检测中放射科医生的重要辅助手段,确保 DL 算法和放射科医生更好地相互理解决策至关重要。本研究旨在开发一个集成可解释 AI 方法的框架,以实现准确的肺结节检测。

方法

提出了一种稳健且可解释的检测(RXD)框架,重点是减少肺结节检测中的假阳性。它的实现基于解释监督方法,该方法使用放射科医生的结节轮廓作为监督信号,迫使模型学习结节形态,从而提高小数据集上的学习能力,并使模型能够具有符合人类预期的稳健归因。此外,还应用了两种插补方法对结节区域注释进行处理,以减少人为注释中的噪声,并使模型具有稳健的归因,符合人类的期望。使用来自公共的肺图像数据库联盟和图像数据库资源倡议(LIDC-IDRI)数据集的 480、265 和 265 个 CT 图像集进行训练、验证和测试。

结果

仅使用 10、30、50 和 100 个训练样本依次进行,我们的方法在 AUC 和 IoU 方面不断提高基线的分类性能和解释质量。特别是,我们具有可学习插补核的框架将基线的 IoU 提高了 24.0%至 80.0%。预定义的高斯插补核的改善更大,从基线的 38.4%提高到 118.8%。与在 100 个样本上训练的基线相比,我们的方法在使用较少样本进行训练时 AUC 下降幅度较小。全面的可解释性比较表明,我们的方法与专家意见更一致。

结论

使用公共的胸部 CT 图像数据集展示了一种肺结节检测框架。该框架集成了稳健的解释监督(RES)技术,以确保结节分类和形态的性能。该方法可以减少放射科医生的工作量,并使他们能够专注于早期潜在癌性肺结节的诊断和预后,从而提高肺癌患者的治疗效果。

相似文献

1
Robust explanation supervision for false positive reduction in pulmonary nodule detection.
Med Phys. 2024 Mar;51(3):1687-1701. doi: 10.1002/mp.16937. Epub 2024 Jan 15.
2
An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image.
Comput Methods Programs Biomed. 2020 Dec;197:105720. doi: 10.1016/j.cmpb.2020.105720. Epub 2020 Aug 25.
3
Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database.
Eur Radiol. 2016 Jul;26(7):2139-47. doi: 10.1007/s00330-015-4030-7. Epub 2015 Oct 6.
4
Computer-Aided Diagnosis (CAD) of Pulmonary Nodule of Thoracic CT Image Using Transfer Learning.
J Digit Imaging. 2019 Dec;32(6):995-1007. doi: 10.1007/s10278-019-00204-4.
5
A Segmentation Framework of Pulmonary Nodules in Lung CT Images.
J Digit Imaging. 2016 Feb;29(1):86-103. doi: 10.1007/s10278-015-9801-9.
6
A new computationally efficient CAD system for pulmonary nodule detection in CT imagery.
Med Image Anal. 2010 Jun;14(3):390-406. doi: 10.1016/j.media.2010.02.004. Epub 2010 Feb 19.
7
Automatic Pulmonary Nodule Detection in CT Scans Using Convolutional Neural Networks Based on Maximum Intensity Projection.
IEEE Trans Med Imaging. 2020 Mar;39(3):797-805. doi: 10.1109/TMI.2019.2935553. Epub 2019 Aug 15.
10
Deep learning for malignancy risk estimation of incidental sub-centimeter pulmonary nodules on CT images.
Eur Radiol. 2024 Jul;34(7):4218-4229. doi: 10.1007/s00330-023-10518-1. Epub 2023 Dec 20.

引用本文的文献

1
Diagnostic performance and safety for robotic-assisted bronchoscopy in pulmonary nodules: a systematic review and meta-analysis.
Int J Surg. 2025 Jun 1;111(6):4020-4032. doi: 10.1097/JS9.0000000000002423. Epub 2025 May 12.

本文引用的文献

1
3D multi-view squeeze-and-excitation convolutional neural network for lung nodule classification.
Med Phys. 2023 Mar;50(3):1905-1916. doi: 10.1002/mp.16221. Epub 2023 Feb 1.
2
Automatic segmentation of the tumor in nonsmall-cell lung cancer by combining coarse and fine segmentation.
Med Phys. 2023 Jun;50(6):3549-3559. doi: 10.1002/mp.16158. Epub 2023 Jan 13.
3
Abdomen CT multi-organ segmentation using token-based MLP-Mixer.
Med Phys. 2023 May;50(5):3027-3038. doi: 10.1002/mp.16135. Epub 2022 Dec 20.
7
A review of explainable and interpretable AI with applications in COVID-19 imaging.
Med Phys. 2022 Jan;49(1):1-14. doi: 10.1002/mp.15359. Epub 2021 Dec 7.
8
Anatomy-aided deep learning for medical image segmentation: a review.
Phys Med Biol. 2021 May 26;66(11). doi: 10.1088/1361-6560/abfbf4.
9
SANet: A Slice-Aware Network for Pulmonary Nodule Detection.
IEEE Trans Pattern Anal Mach Intell. 2022 Aug;44(8):4374-4387. doi: 10.1109/TPAMI.2021.3065086. Epub 2022 Jul 1.
10
Interpretation and visualization techniques for deep learning models in medical imaging.
Phys Med Biol. 2021 Feb 2;66(4):04TR01. doi: 10.1088/1361-6560/abcd17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验