Suppr超能文献

酵母中的铁毒性:液泡铁导入蛋白Ccc1的转录调控

Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1.

作者信息

Li Liangtao, Ward Diane M

机构信息

Division of Microbiology and Immunology, Department of Pathology, School of Medicine, University of Utah, Salt Lake City, UT, 84132-2501, USA.

出版信息

Curr Genet. 2018 Apr;64(2):413-416. doi: 10.1007/s00294-017-0767-7. Epub 2017 Oct 17.

Abstract

All eukaryotes require the transition metal, iron, a redox active element that is an essential cofactor in many metabolic pathways, as well as an oxygen carrier. Iron can also react to generate oxygen radicals such as hydroxyl radicals and superoxide anions, which are highly toxic to cells. Therefore, organisms have developed intricate mechanisms to acquire iron as well as to protect themselves from the toxic effects of excess iron. In fungi and plants, iron is stored in the vacuole as a protective mechanism against iron toxicity. Iron storage in the vacuole is mediated predominantly by the vacuolar metal importer Ccc1 in yeast and the homologous transporter VIT1 in plants. Transcription of yeast CCC1 expression is tightly controlled primarily by the transcription factor Yap5, which sits on the CCC1 promoter and activates transcription through the binding of Fe-S clusters. A second mechanism that regulates CCC1 transcription is through the Snf1 signaling pathway involved in low-glucose sensing. Snf1 activates stress transcription factors Msn2 and Msn4 to mediate CCC1 transcription. Transcriptional regulation by Yap5 and Snf1 are completely independent and provide for a graded response in Ccc1 expression. The identification of multiple independent transcriptional pathways that regulate the levels of Ccc1 under high iron conditions accentuates the importance of protecting cells from the toxic effects of high iron.

摘要

所有真核生物都需要过渡金属铁,铁是一种具有氧化还原活性的元素,是许多代谢途径中必不可少的辅助因子,也是一种氧载体。铁还能反应生成氧自由基,如羟基自由基和超氧阴离子,这些对细胞具有高度毒性。因此,生物体已经发展出复杂的机制来获取铁,并保护自己免受过量铁的毒性影响。在真菌和植物中,铁作为一种对抗铁毒性的保护机制,被储存在液泡中。液泡中铁的储存主要由酵母中的液泡金属导入蛋白Ccc1和植物中的同源转运蛋白VIT1介导。酵母CCC1表达的转录主要由转录因子Yap5严格控制,Yap5位于CCC1启动子上,并通过结合铁硫簇激活转录。调节CCC1转录的第二种机制是通过参与低葡萄糖感知的Snf1信号通路。Snf1激活应激转录因子Msn2和Msn4来介导CCC1转录。Yap5和Snf1的转录调控是完全独立的,并为Ccc1表达提供了分级反应。在高铁条件下调节Ccc1水平的多个独立转录途径的发现,突出了保护细胞免受高铁毒性影响的重要性。

相似文献

1
Iron toxicity in yeast: transcriptional regulation of the vacuolar iron importer Ccc1.
Curr Genet. 2018 Apr;64(2):413-416. doi: 10.1007/s00294-017-0767-7. Epub 2017 Oct 17.
3
Yap5 is an iron-responsive transcriptional activator that regulates vacuolar iron storage in yeast.
Mol Cell Biol. 2008 Feb;28(4):1326-37. doi: 10.1128/MCB.01219-07. Epub 2007 Dec 10.
4
Structure and function of the vacuolar Ccc1/VIT1 family of iron transporters and its regulation in fungi.
Comput Struct Biotechnol J. 2020 Nov 23;18:3712-3722. doi: 10.1016/j.csbj.2020.10.044. eCollection 2020.
6
The role of the Yap5 transcription factor in remodeling gene expression in response to Fe bioavailability.
PLoS One. 2012;7(5):e37434. doi: 10.1371/journal.pone.0037434. Epub 2012 May 16.
7
Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.
World J Microbiol Biotechnol. 2017 Apr;33(4):75. doi: 10.1007/s11274-017-2215-8. Epub 2017 Mar 17.
8
CCC1 is a transporter that mediates vacuolar iron storage in yeast.
J Biol Chem. 2001 Aug 3;276(31):29515-9. doi: 10.1074/jbc.M103944200. Epub 2001 Jun 4.
9
Regulation of Saccharomyces cerevisiae FET4 by oxygen and iron.
J Mol Biol. 2002 Apr 26;318(2):251-60. doi: 10.1016/S0022-2836(02)00093-1.
10
A role for iron-sulfur clusters in the regulation of transcription factor Yap5-dependent high iron transcriptional responses in yeast.
J Biol Chem. 2012 Oct 12;287(42):35709-35721. doi: 10.1074/jbc.M112.395533. Epub 2012 Aug 22.

引用本文的文献

1
Effect of R-18 on Maize Growth Promotion Under Salt Stress.
Microorganisms. 2025 Jul 31;13(8):1796. doi: 10.3390/microorganisms13081796.
2
The Role of from in Iron Acquisition, Fumonisin B1 Production, and Virulence.
Int J Mol Sci. 2025 Mar 22;26(7):2883. doi: 10.3390/ijms26072883.
3
N88S seipin-related seipinopathy is a lipidopathy associated with loss of iron homeostasis.
Cell Commun Signal. 2025 Jan 7;23(1):10. doi: 10.1186/s12964-024-02007-9.
4
Engineering transcriptional regulatory networks for improving second-generation fuel ethanol production in .
Synth Syst Biotechnol. 2024 Oct 28;10(1):207-217. doi: 10.1016/j.synbio.2024.10.006. eCollection 2025.
5
Engineering the microenvironment of P450s to enhance the production of diterpenoids in .
Acta Pharm Sin B. 2024 Oct;14(10):4608-4618. doi: 10.1016/j.apsb.2024.05.019. Epub 2024 May 22.
7
Rewiring metabolism for optimised Taxol® precursors production.
Metab Eng Commun. 2023 Nov 15;18:e00229. doi: 10.1016/j.mec.2023.e00229. eCollection 2024 Jun.
8
Regulatory and pathogenic mechanisms in response to iron deficiency and excess in fungi.
Microb Biotechnol. 2023 Nov;16(11):2053-2071. doi: 10.1111/1751-7915.14346. Epub 2023 Oct 7.
9
Essential Role of Erg6p in Maintaining Oxidative Stress Tolerance and Iron Homeostasis in .
J Fungi (Basel). 2023 May 17;9(5):579. doi: 10.3390/jof9050579.
10
Adaptation of Species to High-Iron Conditions.
Int J Mol Sci. 2022 Nov 12;23(22):13965. doi: 10.3390/ijms232213965.

本文引用的文献

2
Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.
World J Microbiol Biotechnol. 2017 Apr;33(4):75. doi: 10.1007/s11274-017-2215-8. Epub 2017 Mar 17.
3
Responses to phosphate deprivation in yeast cells.
Curr Genet. 2016 May;62(2):301-7. doi: 10.1007/s00294-015-0544-4. Epub 2015 Nov 28.
4
Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling.
Curr Genet. 2015 Nov;61(4):503-11. doi: 10.1007/s00294-015-0491-0. Epub 2015 May 10.
5
Activation of the mitochondrial signaling pathway in response to organic solvent stress in yeast.
Curr Genet. 2015 May;61(2):153-64. doi: 10.1007/s00294-014-0463-9. Epub 2014 Dec 7.
6
7
Vacuolar-Iron-Transporter1-Like proteins mediate iron homeostasis in Arabidopsis.
PLoS One. 2014 Oct 31;9(10):e110468. doi: 10.1371/journal.pone.0110468. eCollection 2014.
8
Mössbauer, EPR, and modeling study of iron trafficking and regulation in Δccc1 and CCC1-up Saccharomyces cerevisiae.
Biochemistry. 2014 May 13;53(18):2926-40. doi: 10.1021/bi500002n. Epub 2014 May 2.
9
Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae.
FEMS Microbiol Rev. 2014 Mar;38(2):254-99. doi: 10.1111/1574-6976.12065. Epub 2014 Mar 3.
10
Iron sensing and regulation in Saccharomyces cerevisiae: Ironing out the mechanistic details.
Curr Opin Microbiol. 2013 Dec;16(6):662-8. doi: 10.1016/j.mib.2013.07.020. Epub 2013 Aug 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验