Sorribes-Dauden Raquel, Peris David, Martínez-Pastor María Teresa, Puig Sergi
Departamento de Bioquímica y Biología Molecular, Universitat de València, Burjassot, Valencia, Spain.
Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Valencia, Spain.
Comput Struct Biotechnol J. 2020 Nov 23;18:3712-3722. doi: 10.1016/j.csbj.2020.10.044. eCollection 2020.
Iron is an essential micronutrient for most living beings since it participates as a redox active cofactor in many biological processes including cellular respiration, lipid biosynthesis, DNA replication and repair, and ribosome biogenesis and recycling. However, when present in excess, iron can participate in Fenton reactions and generate reactive oxygen species that damage cells at the level of proteins, lipids and nucleic acids. Organisms have developed different molecular strategies to protect themselves against the harmful effects of high concentrations of iron. In the case of fungi and plants, detoxification mainly occurs by importing cytosolic iron into the vacuole through the Ccc1/VIT1 iron transporter. New sequenced genomes and bioinformatic tools are facilitating the functional characterization, evolution and ecological relevance of metabolic pathways and homeostatic networks across the Tree of Life. Sequence analysis shows that Ccc1/VIT1 homologs are widely distributed among organisms with the exception of animals. The recent elucidation of the crystal structure of a Ccc1/VIT1 plant ortholog has enabled the identification of both conserved and species-specific motifs required for its metal transport mechanism. Moreover, recent studies in the yeast have also revealed that multiple transcription factors including Yap5 and Msn2/Msn4 contribute to the expression of in high-iron conditions. Interestingly, Malaysian strains express a partially functional Ccc1 protein that renders them sensitive to iron. Different regulatory mechanisms have been described for non-Saccharomycetaceae Ccc1 homologs. The characterization of Ccc1/VIT1 proteins is of high interest in the development of biofortified crops and the protection against microbial-derived diseases.
铁是大多数生物必需的微量营养素,因为它作为一种氧化还原活性辅因子参与许多生物过程,包括细胞呼吸、脂质生物合成、DNA复制和修复以及核糖体生物合成和循环利用。然而,当铁过量存在时,它会参与芬顿反应并产生活性氧,这些活性氧会在蛋白质、脂质和核酸水平上损害细胞。生物体已经发展出不同的分子策略来保护自己免受高浓度铁的有害影响。在真菌和植物中,解毒主要通过Ccc1/VIT1铁转运蛋白将胞质铁导入液泡来实现。新测序的基因组和生物信息学工具正在促进整个生命之树中代谢途径和稳态网络的功能表征、进化及生态相关性研究。序列分析表明,除动物外,Ccc1/VIT1同源物在生物体内广泛分布。最近对一种Ccc1/VIT1植物直系同源物晶体结构的阐明,使得能够鉴定其金属转运机制所需的保守基序和物种特异性基序。此外,最近对酵母的研究还表明,包括Yap5和Msn2/Msn4在内的多种转录因子在高铁条件下有助于Ccc1的表达。有趣的是,马来西亚的酵母菌株表达一种部分功能的Ccc1蛋白,这使它们对铁敏感。对于非酿酒酵母科的Ccc1同源物,已经描述了不同的调控机制。Ccc1/VIT1蛋白的表征在生物强化作物的开发和预防微生物源性疾病方面具有很高的研究价值。