Suppr超能文献

三维打印的磷酸钙和聚己内酯复合材料,具有改善的机械性能和保留的微观结构。

Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure.

机构信息

Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627.

Center for Musculoskeletal Research, University of Rochester, Rochester, New York 14642.

出版信息

J Biomed Mater Res A. 2018 Mar;106(3):663-672. doi: 10.1002/jbm.a.36270. Epub 2017 Nov 2.

Abstract

Biphasic calcium phosphate scaffolds formed via three dimensional (3D) printing technology to exhibit porosity and chemical resorbability to promote osseointegration often lack the strength and toughness required to withstand loading in bone tissue engineering applications. Herein, sintering and CaP:poly(caprolactone) (PCL) composite formation were explored to improve 3D printed scaffold strength and toughness. Hydroxyapatite and α-tricalcium phosphate (α-TCP) biphasic calcium powders were printed using phosphoric acid binder, which generated monetite and hydroxyapatite scaffolds. Upon sintering, evolution of β-TCP was observed along with an increase in flexural strength and modulus but no effect on fracture toughness was observed. Furthermore, scaffold porosity increased with sintering. Additionally, two techniques of PCL composite formation were employed: postprint precipitation and 3D print codeposition to further augment scaffold mechanical properties. While both techniques significantly improved flexural strength, flexural modulus, and fracture toughness under most conditions explored, precipitation yielded more substantial increases in these properties, which is attributed to better continuity of the PCL phase. However, precipitation also compromised surface porosity due to PCL passivation of the calcium phosphate surface, which may subsequently hinder scaffold integration and bone regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 663-672, 2018.

摘要

通过三维(3D)打印技术形成的双相磷酸钙支架具有多孔性和可化学吸收性,可促进骨整合,但通常缺乏承受骨组织工程应用中负载所需的强度和韧性。本文探讨了烧结和 CaP:聚(己内酯)(PCL)复合形成,以提高 3D 打印支架的强度和韧性。使用磷酸作为粘结剂打印羟基磷灰石和α-磷酸三钙(α-TCP)双相钙粉,生成了磷灰石和羟基磷灰石支架。烧结后,观察到β-TCP 的演变,同时抗弯强度和模量增加,但断裂韧性没有变化。此外,支架的孔隙率随烧结而增加。另外,采用两种 PCL 复合形成技术:后沉淀和 3D 打印共沉积来进一步提高支架的机械性能。虽然这两种技术在大多数情况下都显著提高了抗弯强度、抗弯模量和断裂韧性,但沉淀法在这些性能上的提高更为显著,这归因于 PCL 相的连续性更好。然而,沉淀法也由于 PCL 对磷酸钙表面的钝化作用而损害了表面孔隙率,这可能随后阻碍支架的整合和骨再生。 © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 663-672, 2018.

相似文献

2
Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
J Mater Sci Mater Med. 2017 Sep 15;28(10):168. doi: 10.1007/s10856-017-5989-1.
4
Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109960. doi: 10.1016/j.msec.2019.109960. Epub 2019 Jul 6.
5
Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.
Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:1-10. doi: 10.1016/j.msec.2014.01.027. Epub 2014 Jan 22.
8
Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
J Biomed Mater Res A. 2016 Jul;104(7):1779-87. doi: 10.1002/jbm.a.35711. Epub 2016 Mar 21.
9
Physico-chemical and in vitro cellular properties of different calcium phosphate-bioactive glass composite chitosan-collagen (CaP@ChiCol) for bone scaffolds.
J Biomed Mater Res B Appl Biomater. 2017 Oct;105(7):1758-1766. doi: 10.1002/jbm.b.33652. Epub 2016 May 17.
10
Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
Biofabrication. 2015 Jan 6;7(1):015004. doi: 10.1088/1758-5090/7/1/015004.

引用本文的文献

1
Development of a biodegradable α-TCP/PLA/nMgO composite for enhanced guided bone regeneration.
Sci Rep. 2025 Jun 4;15(1):19675. doi: 10.1038/s41598-025-03426-5.
4
Investigation of Calcium Phosphate-Based Biopolymer Composite Scaffolds for Bone Tissue Engineering.
Int J Mol Sci. 2024 Dec 22;25(24):13716. doi: 10.3390/ijms252413716.
5
Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration.
Regen Med. 2024 May 3;19(5):257-278. doi: 10.1080/17460751.2024.2343555. Epub 2024 May 22.
6
Additive Manufacturing of Biomaterials-Design Principles and Their Implementation.
Materials (Basel). 2022 Aug 8;15(15):5457. doi: 10.3390/ma15155457.
7
Biological properties of calcium phosphate biomaterials for bone repair: a review.
RSC Adv. 2018 Jan 9;8(4):2015-2033. doi: 10.1039/c7ra11278e. eCollection 2018 Jan 5.
8
The Application of Polycaprolactone in Three-Dimensional Printing Scaffolds for Bone Tissue Engineering.
Polymers (Basel). 2021 Aug 17;13(16):2754. doi: 10.3390/polym13162754.
10
Polycaprolactone as biomaterial for bone scaffolds: Review of literature.
J Oral Biol Craniofac Res. 2020 Jan-Mar;10(1):381-388. doi: 10.1016/j.jobcr.2019.10.003. Epub 2019 Nov 5.

本文引用的文献

1
The nanocomposite nature of bone drives its strength and damage resistance.
Nat Mater. 2016 Nov;15(11):1195-1202. doi: 10.1038/nmat4719. Epub 2016 Aug 8.
2
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery.
Ann Biomed Eng. 2017 Jan;45(1):23-44. doi: 10.1007/s10439-016-1678-3. Epub 2016 Jun 20.
3
Enzymatically-responsive pro-angiogenic peptide-releasing poly(ethylene glycol) hydrogels promote vascularization in vivo.
J Control Release. 2015 Nov 10;217:191-201. doi: 10.1016/j.jconrel.2015.09.005. Epub 2015 Sep 11.
4
Depot-Based Delivery Systems for Pro-Angiogenic Peptides: A Review.
Front Bioeng Biotechnol. 2015 Jul 16;3:102. doi: 10.3389/fbioe.2015.00102. eCollection 2015.
5
Temporally tunable, enzymatically responsive delivery of proangiogenic peptides from poly(ethylene glycol) hydrogels.
Adv Healthc Mater. 2015 Sep 16;4(13):2002-11. doi: 10.1002/adhm.201500304. Epub 2015 Jul 7.
7
Pediatric craniomaxillofacial trauma.
Facial Plast Surg Clin North Am. 2014 Nov;22(4):559-72. doi: 10.1016/j.fsc.2014.07.009. Epub 2014 Nov 8.
8
Bioceramics composed of octacalcium phosphate demonstrate enhanced biological behavior.
ACS Appl Mater Interfaces. 2014 Oct 8;6(19):16610-20. doi: 10.1021/am502583p. Epub 2014 Sep 16.
9
Degradable hydrogels for spatiotemporal control of mesenchymal stem cells localized at decellularized bone allografts.
Acta Biomater. 2014 Aug;10(8):3431-41. doi: 10.1016/j.actbio.2014.04.012. Epub 2014 Apr 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验