Suppr超能文献

乳酸和葡萄糖的同位素和净贡献与三羧酸 (TCA) 循环之间的定量关系。

The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.

机构信息

From the Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China.

From the Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China

出版信息

J Biol Chem. 2019 Jun 14;294(24):9615-9630. doi: 10.1074/jbc.RA119.007841. Epub 2019 Apr 30.

Abstract

Whether growing cancer cells prefer lactate as a fuel over glucose or vice versa is an important but controversial issue. Labeling of tricarboxylic acid (TCA) cycle intermediates with glucose or lactate isotope tracers is often used to report the relative contributions of these two metabolites to the TCA cycle. However, this approach may not yield accurate results, as isotopic labeling may not accurately reflect net contributions of each metabolite. This may be due to isotopic exchange occurring during the conversion between pyruvate and lactate. To evaluate this quantitatively, we used an equation ( - ' = ' - ) assessing the relationship between isotopic labeling and net consumption measurements and refer to the contributions of glucose and lactate to the TCA cycle as measured by their net consumption, whereas ' and ' refer to glucose's and lactate's contributions determined with isotopic labeling. We found that the isotopic labeling data overestimate the net contribution of lactate to the TCA cycle and underestimate that of glucose. The overestimated amount is equal to the isotopic exchange amount between pyruvate and lactate. After excluding the interference of isotopic exchange, the major carbon contribution ( acetyl-CoA) to the TCA cycle comes from glucose rather than lactate We propose that these relative contributions of glucose and lactate may also be present in cancer cells .

摘要

无论是癌细胞更倾向于将乳酸还是葡萄糖作为燃料,这都是一个重要但有争议的问题。用葡萄糖或乳酸同位素示踪剂标记三羧酸(TCA)循环中间产物通常用于报告这两种代谢物对 TCA 循环的相对贡献。然而,这种方法可能无法得出准确的结果,因为同位素标记可能无法准确反映每种代谢物的净贡献。这可能是由于在丙酮酸和乳酸之间的转化过程中发生了同位素交换。为了定量评估这一点,我们使用了一个方程(- '= '-)来评估同位素标记与净消耗测量之间的关系,我们将葡萄糖和乳酸对 TCA 循环的贡献称为净消耗,而'和'则表示通过同位素标记确定的葡萄糖和乳酸的贡献。我们发现,同位素标记数据高估了乳酸对 TCA 循环的净贡献,低估了葡萄糖的贡献。高估的量等于丙酮酸和乳酸之间的同位素交换量。排除同位素交换的干扰后,TCA 循环的主要碳贡献(乙酰辅酶 A)来自葡萄糖而不是乳酸。我们提出,葡萄糖和乳酸的这些相对贡献也可能存在于癌细胞中。

相似文献

1
The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle.
J Biol Chem. 2019 Jun 14;294(24):9615-9630. doi: 10.1074/jbc.RA119.007841. Epub 2019 Apr 30.
3
7
Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart.
Am J Physiol Heart Circ Physiol. 2003 Jul;285(1):H163-72. doi: 10.1152/ajpheart.01117.2002.
9
NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain.
J Cereb Blood Flow Metab. 1992 May;12(3):434-47. doi: 10.1038/jcbfm.1992.61.
10
Probing the cardiac malate-aspartate shuttle non-invasively using hyperpolarized [1,2- C ]pyruvate.
NMR Biomed. 2018 Jan;31(1). doi: 10.1002/nbm.3845. Epub 2017 Nov 6.

引用本文的文献

2
Recent Advances in Biodegradable and Biocompatible Synthetic Polymers Used in Skin Wound Healing.
Materials (Basel). 2023 Aug 3;16(15):5459. doi: 10.3390/ma16155459.
4
Targeting MYC-enhanced glycolysis for the treatment of small cell lung cancer.
Cancer Metab. 2021 Sep 23;9(1):33. doi: 10.1186/s40170-021-00270-9.
5
Lactate dehydrogenases amplify reactive oxygen species in cancer cells in response to oxidative stimuli.
Signal Transduct Target Ther. 2021 Jun 28;6(1):242. doi: 10.1038/s41392-021-00595-3.
6
Impaired anaplerosis is a major contributor to glycolysis inhibitor toxicity in glioma.
Cancer Metab. 2021 Jun 25;9(1):27. doi: 10.1186/s40170-021-00259-4.
7
In vivoH/C flux analysis in metabolism research.
Curr Opin Biotechnol. 2021 Oct;71:1-8. doi: 10.1016/j.copbio.2021.04.005. Epub 2021 May 25.
9
Determining the quantitative relationship between glycolysis and GAPDH in cancer cells exhibiting the Warburg effect.
J Biol Chem. 2021 Jan-Jun;296:100369. doi: 10.1016/j.jbc.2021.100369. Epub 2021 Feb 3.
10
Perturbation of phosphoglycerate kinase 1 (PGK1) only marginally affects glycolysis in cancer cells.
J Biol Chem. 2020 May 8;295(19):6425-6446. doi: 10.1074/jbc.RA119.012312. Epub 2020 Mar 26.

本文引用的文献

1
Glucose feeds the TCA cycle via circulating lactate.
Nature. 2017 Nov 2;551(7678):115-118. doi: 10.1038/nature24057. Epub 2017 Oct 18.
2
Lactate Metabolism in Human Lung Tumors.
Cell. 2017 Oct 5;171(2):358-371.e9. doi: 10.1016/j.cell.2017.09.019.
3
The importance of accurately correcting for the natural abundance of stable isotopes.
Anal Biochem. 2017 Mar 1;520:27-43. doi: 10.1016/j.ab.2016.12.011. Epub 2017 Jan 11.
4
Metabolic Heterogeneity in Human Lung Tumors.
Cell. 2016 Feb 11;164(4):681-94. doi: 10.1016/j.cell.2015.12.034. Epub 2016 Feb 4.
5
Genome engineering using the CRISPR-Cas9 system.
Nat Protoc. 2013 Nov;8(11):2281-2308. doi: 10.1038/nprot.2013.143. Epub 2013 Oct 24.
7
PDK1 inhibition is a novel therapeutic target in multiple myeloma.
Br J Cancer. 2013 Jan 15;108(1):170-8. doi: 10.1038/bjc.2012.527. Epub 2012 Nov 29.
9
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia.
Nature. 2011 Nov 20;481(7381):380-4. doi: 10.1038/nature10602.
10
Reductive carboxylation supports growth in tumour cells with defective mitochondria.
Nature. 2011 Nov 20;481(7381):385-8. doi: 10.1038/nature10642.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验