Suppr超能文献

用于增强白质病变连通性映射的纤维束定向分布恢复技术

FOD Restoration for Enhanced Mapping of White Matter Lesion Connectivity.

作者信息

Sun Wei, Amezcua Lilyana, Shi Yonggang

机构信息

Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA.

Multiple Sclerosis Comprehensive Care Center, Keck School of Medicine, University of Southern California, Los Angeles, USA.

出版信息

Med Image Comput Comput Assist Interv. 2017 Sep;10433:584-592. doi: 10.1007/978-3-319-66182-7_67. Epub 2017 Sep 4.

Abstract

To achieve improved understanding of white matter (WM) lesions and their effect on brain functions, it is important to obtain a comprehensive map of their connectivity. However, changes of the cellular environment in WM lesions attenuate diffusion MRI (dMRI) signals and make the robust estimation of fiber orientation distributions (FODs) difficult. In this work, we integrate techniques from image inpainting and compartment modeling to develop a novel method for enhancing FOD estimation in WM lesions from multi-shell dMRI, which is becoming increasingly popular with the success of the Human Connectome Project (HCP). By using FODs estimated from normal WM as the boundary condition, our method iteratively cycles through two key steps: diffusion-based inpainting and FOD reconstruction with compartment modeling for the successful restoration of FODs in WM lesions. In our experiments, we carry out extensive simulations to quantitatively demonstrate that our method outperforms a state-of-the-art method in angular accuracy and compartment parameter estimation. We also apply our method to multi-shell imaging data from 23 multiple sclerosis (MS) patients and one LifeSpan subject of HCP with WM lesion. We show that our method achieves superior performance in mapping the connectivity of WM lesions with FOD-based tractography.

摘要

为了更好地理解白质(WM)病变及其对脑功能的影响,获取其连通性的全面图谱非常重要。然而,WM病变中细胞环境的变化会减弱扩散磁共振成像(dMRI)信号,使得对纤维方向分布(FOD)进行稳健估计变得困难。在这项工作中,我们整合了图像修复和 compartment 建模技术,以开发一种新方法,用于增强从多壳层dMRI估计WM病变中的FOD,随着人类连接组计划(HCP)的成功,多壳层dMRI越来越受欢迎。通过将从正常WM估计的FOD用作边界条件,我们的方法在两个关键步骤中迭代循环:基于扩散的修复和使用 compartment 建模进行FOD重建,以成功恢复WM病变中的FOD。在我们的实验中,我们进行了广泛的模拟,以定量证明我们的方法在角度精度和 compartment 参数估计方面优于一种先进方法。我们还将我们的方法应用于来自23名多发性硬化症(MS)患者和一名HCP有WM病变的 Lifespan 受试者的多壳层成像数据。我们表明,我们的方法在使用基于FOD的纤维束成像绘制WM病变的连通性方面具有卓越的性能。

相似文献

1
FOD Restoration for Enhanced Mapping of White Matter Lesion Connectivity.
Med Image Comput Comput Assist Interv. 2017 Sep;10433:584-592. doi: 10.1007/978-3-319-66182-7_67. Epub 2017 Sep 4.
2
Generalized Richardson-Lucy (GRL) for analyzing multi-shell diffusion MRI data.
Neuroimage. 2020 Sep;218:116948. doi: 10.1016/j.neuroimage.2020.116948. Epub 2020 May 16.
3
FOD-Net: A deep learning method for fiber orientation distribution angular super resolution.
Med Image Anal. 2022 Jul;79:102431. doi: 10.1016/j.media.2022.102431. Epub 2022 Apr 6.
5
Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging.
IEEE Trans Med Imaging. 2015 Nov;34(11):2320-32. doi: 10.1109/TMI.2015.2430850. Epub 2015 May 7.
6
Automated retinofugal visual pathway reconstruction with multi-shell HARDI and FOD-based analysis.
Neuroimage. 2016 Jan 15;125:767-779. doi: 10.1016/j.neuroimage.2015.11.005. Epub 2015 Nov 6.
7
Using mesoscopic tract-tracing data to guide the estimation of fiber orientation distributions in the mouse brain from diffusion MRI.
Neuroimage. 2023 Apr 15;270:119999. doi: 10.1016/j.neuroimage.2023.119999. Epub 2023 Mar 5.
8
FOD-based registration for susceptibility distortion correction in brainstem connectome imaging.
Neuroimage. 2019 Nov 15;202:116164. doi: 10.1016/j.neuroimage.2019.116164. Epub 2019 Sep 10.
10
Modelfree global tractography.
Neuroimage. 2018 Jul 1;174:576-586. doi: 10.1016/j.neuroimage.2018.03.058. Epub 2018 Mar 29.

引用本文的文献

2
A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis.
Mult Scler. 2020 Jun;26(7):774-785. doi: 10.1177/1352458519845105. Epub 2019 May 10.

本文引用的文献

1
Preclinical Cerebral Network Connectivity Evidence of Deficits in Mild White Matter Lesions.
Front Aging Neurosci. 2016 Feb 18;8:27. doi: 10.3389/fnagi.2016.00027. eCollection 2016.
2
Fiber Orientation and Compartment Parameter Estimation From Multi-Shell Diffusion Imaging.
IEEE Trans Med Imaging. 2015 Nov;34(11):2320-32. doi: 10.1109/TMI.2015.2430850. Epub 2015 May 7.
3
A modality-agnostic patch-based technique for lesion filling in multiple sclerosis.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):781-8. doi: 10.1007/978-3-319-10470-6_97.
4
The Human Connectome Project: a data acquisition perspective.
Neuroimage. 2012 Oct 1;62(4):2222-31. doi: 10.1016/j.neuroimage.2012.02.018. Epub 2012 Feb 17.
5
Quantification of increased cellularity during inflammatory demyelination.
Brain. 2011 Dec;134(Pt 12):3590-601. doi: 10.1093/brain/awr307.
6
Track-density imaging (TDI): super-resolution white matter imaging using whole-brain track-density mapping.
Neuroimage. 2010 Dec;53(4):1233-43. doi: 10.1016/j.neuroimage.2010.07.024. Epub 2010 Jul 17.
9
Pathogenesis of axonal and neuronal damage in multiple sclerosis.
Neurology. 2007 May 29;68(22 Suppl 3):S22-31; discussion S43-54. doi: 10.1212/01.wnl.0000275229.13012.32.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验