Suppr超能文献

多壳多组织弥散研究多发性硬化早期的脑连接

A multi-shell multi-tissue diffusion study of brain connectivity in early multiple sclerosis.

机构信息

Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK.

Queen Square MS Centre, Department of Neuroinflammation, UCL Institute of Neurology, University College London (UCL), London, UK/Centre for Medical Image Computing, Department of Computer Science, University College London (UCL), London, UK.

出版信息

Mult Scler. 2020 Jun;26(7):774-785. doi: 10.1177/1352458519845105. Epub 2019 May 10.

Abstract

BACKGROUND

The potential of multi-shell diffusion imaging to produce accurate brain connectivity metrics able to unravel key pathophysiological processes in multiple sclerosis (MS) has scarcely been investigated.

OBJECTIVE

To test, in patients with a clinically isolated syndrome (CIS), whether multi-shell imaging-derived connectivity metrics can differentiate patients from controls, correlate with clinical measures, and perform better than metrics obtained with conventional single-shell protocols.

METHODS

Nineteen patients within 3 months from the CIS and 12 healthy controls underwent anatomical and 53-direction multi-shell diffusion-weighted 3T images. Patients were cognitively assessed. Voxel-wise fibre orientation distribution functions were estimated and used to obtain network metrics. These were also calculated using a conventional single-shell diffusion protocol. Through linear regression, we obtained effect sizes and standardised regression coefficients.

RESULTS

Patients had lower mean nodal strength ( = 0.003) and greater network modularity than controls ( = 0.045). Greater modularity was associated with worse cognitive performance in patients, even after accounting for lesion load ( = 0.002). Multi-shell-derived metrics outperformed single-shell-derived ones.

CONCLUSION

Connectivity-based nodal strength and network modularity are abnormal in the CIS. Furthermore, the increased network modularity observed in patients, indicating microstructural damage, is clinically relevant. Connectivity analyses based on multi-shell imaging can detect potentially relevant network changes in early MS.

摘要

背景

多壳扩散成像具有产生能够揭示多发性硬化症(MS)关键病理生理过程的准确脑连接度量的潜力,但尚未得到充分研究。

目的

在临床孤立综合征(CIS)患者中测试,多壳成像衍生的连接度量是否可以区分患者与对照组,与临床测量相关,并且比常规单壳协议获得的度量表现更好。

方法

19 名 CIS 后 3 个月内的患者和 12 名健康对照者接受了解剖和 53 个方向的 3T 多壳扩散加权成像。对患者进行认知评估。估计体素的纤维方向分布函数,并用于获得网络度量。这些也使用常规的单壳扩散协议进行计算。通过线性回归,我们获得了效应大小和标准化回归系数。

结果

患者的平均节点强度( = 0.003)和网络模块性( = 0.045)低于对照组。模块性的增加与患者的认知表现更差相关,即使考虑到病变负荷( = 0.002)也是如此。多壳衍生的度量比单壳衍生的度量表现更好。

结论

CIS 中存在基于连接的节点强度和网络模块性异常。此外,在患者中观察到的增加的网络模块性表明存在微观结构损伤,这与临床相关。基于多壳成像的连接分析可以检测早期 MS 中潜在的相关网络变化。

相似文献

引用本文的文献

2
Graph theoretical approach to brain remodeling in multiple sclerosis.用于多发性硬化症脑重塑的图论方法
Netw Neurosci. 2023 Jan 1;7(1):148-159. doi: 10.1162/netn_a_00276. eCollection 2023.

本文引用的文献

3
Structural network disruption markers explain disability in multiple sclerosis.结构网络破坏标志物可解释多发性硬化症的残疾。
J Neurol Neurosurg Psychiatry. 2019 Feb;90(2):219-226. doi: 10.1136/jnnp-2018-318440. Epub 2018 Nov 22.
6
FOD Restoration for Enhanced Mapping of White Matter Lesion Connectivity.用于增强白质病变连通性映射的纤维束定向分布恢复技术
Med Image Comput Comput Assist Interv. 2017 Sep;10433:584-592. doi: 10.1007/978-3-319-66182-7_67. Epub 2017 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验