Suppr超能文献

病理图像的登记

Registration of Pathological Images.

作者信息

Yang Xiao, Han Xu, Park Eunbyung, Aylward Stephen, Kwitt Roland, Niethammer Marc

机构信息

UNC Chapel Hill, Chapel Hill, USA.

Kitware, Inc., USA.

出版信息

Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.

Abstract

This paper proposes an approach to improve atlas-to-image registration accuracy with large pathologies. Instead of directly registering an atlas to a pathological image, the method learns a mapping from the pathological image to a quasi-normal image, for which more accurate registration is possible. Specifically, the method uses a deep variational convolutional encoder-decoder network to learn the mapping. Furthermore, the method estimates local mapping uncertainty through network inference statistics and uses those estimates to down-weight the image registration similarity measure in areas of high uncertainty. The performance of the method is quantified using synthetic brain tumor images and images from the brain tumor segmentation challenge (BRATS 2015).

摘要

本文提出了一种提高带有大病变的图谱到图像配准精度的方法。该方法不是直接将图谱配准到病理图像,而是学习从病理图像到准正常图像的映射,对于准正常图像可以进行更精确的配准。具体而言,该方法使用深度变分卷积编码器-解码器网络来学习这种映射。此外,该方法通过网络推理统计估计局部映射不确定性,并使用这些估计值在高不确定性区域降低图像配准相似性度量的权重。使用合成脑肿瘤图像和来自脑肿瘤分割挑战赛(BRATS 2015)的图像对该方法的性能进行了量化。

相似文献

1
Registration of Pathological Images.病理图像的登记
Simul Synth Med Imaging. 2016 Oct;9968:97-107. doi: 10.1007/978-3-319-46630-9_10. Epub 2016 Sep 23.
4
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
5
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.

引用本文的文献

1
A review of deep learning-based deformable medical image registration.基于深度学习的可变形医学图像配准综述。
Front Oncol. 2022 Dec 7;12:1047215. doi: 10.3389/fonc.2022.1047215. eCollection 2022.
2
A Deep Network for Joint Registration and Reconstruction of Images with Pathologies.一种用于联合配准和重建病变图像的深度网络。
Mach Learn Med Imaging. 2020 Oct;12436:342-352. doi: 10.1007/978-3-030-59861-7_35. Epub 2020 Sep 29.
3
Anomaly detection for the individual analysis of brain PET images.用于脑PET图像个体分析的异常检测
J Med Imaging (Bellingham). 2021 Mar;8(2):024003. doi: 10.1117/1.JMI.8.2.024003. Epub 2021 Apr 5.
9
Multimodal MR Synthesis via Modality-Invariant Latent Representation.基于模态不变潜在表示的多模态磁共振合成。
IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.

本文引用的文献

1
Low-Rank Atlas Image Analyses in the Presence of Pathologies.存在病变情况下的低秩图谱图像分析
IEEE Trans Med Imaging. 2015 Dec;34(12):2583-91. doi: 10.1109/TMI.2015.2448556. Epub 2015 Jun 22.
2
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
3
MR to CT Registration of Brains using Image Synthesis.使用图像合成技术实现脑部的磁共振成像到计算机断层扫描配准
Proc SPIE Int Soc Opt Eng. 2014 Mar 21;9034. doi: spie.org/Publications/Proceedings/Paper/10.1117/12.2043954.
5
MAGNETIC RESONANCE IMAGE SYNTHESIS THROUGH PATCH REGRESSION.基于块回归的磁共振图像合成
Proc IEEE Int Symp Biomed Imaging. 2013 Dec 31;2013:350-353. doi: 10.1109/ISBI.2013.6556484.
6
Multi-modal registration for correlative microscopy using image analogies.使用图像类比的相关显微镜多模态配准。
Med Image Anal. 2014 Aug;18(6):914-26. doi: 10.1016/j.media.2013.12.005. Epub 2013 Dec 18.
9
GLISTR: glioma image segmentation and registration.GLISTR:脑胶质瘤图像分割与配准。
IEEE Trans Med Imaging. 2012 Oct;31(10):1941-54. doi: 10.1109/TMI.2012.2210558. Epub 2012 Aug 13.
10
Geometric metamorphosis.几何变形
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):639-46. doi: 10.1007/978-3-642-23629-7_78.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验