Suppr超能文献

通过元学习增强用于脑肿瘤分割的模态无关表示。

Enhancing Modality-Agnostic Representations via Meta-learning for Brain Tumor Segmentation.

作者信息

Konwer Aishik, Hu Xiaoling, Bae Joseph, Xu Xuan, Chen Chao, Prasanna Prateek

机构信息

Department of Computer Science, Stony Brook University.

Department of Biomedical Informatics, Stony Brook University.

出版信息

Proc IEEE Int Conf Comput Vis. 2023 Oct;2023:21358-21368. doi: 10.1109/iccv51070.2023.01958.

Abstract

In medical vision, different imaging modalities provide complementary information. However, in practice, not all modalities may be available during inference or even training. Previous approaches, e.g., knowledge distillation or image synthesis, often assume the availability of full modalities for all subjects during training; this is unrealistic and impractical due to the variability in data collection across sites. We propose a novel approach to learn enhanced modality-agnostic representations by employing a meta-learning strategy in training, even when only limited full modality samples are available. Meta-learning enhances partial modality representations to full modality representations by meta-training on partial modality data and meta-testing on limited full modality samples. Additionally, we co-supervise this feature enrichment by introducing an auxiliary adversarial learning branch. More specifically, a missing modality detector is used as a discriminator to mimic the full modality setting. Our segmentation framework significantly outperforms state-of-the-art brain tumor segmentation techniques in missing modality scenarios.

摘要

在医学视觉中,不同的成像模态提供互补信息。然而,在实际应用中,并非所有模态在推理甚至训练过程中都可用。先前的方法,如知识蒸馏或图像合成,通常假设在训练期间所有受试者都能获得完整的模态;由于各站点数据收集的差异,这既不现实也不实用。我们提出了一种新颖的方法,即使只有有限的完整模态样本可用,也能在训练中通过采用元学习策略来学习增强的模态无关表示。元学习通过对部分模态数据进行元训练,并对有限的完整模态样本进行元测试,将部分模态表示增强为完整模态表示。此外,我们通过引入辅助对抗学习分支来共同监督这种特征丰富过程。更具体地说,一个缺失模态检测器被用作鉴别器,以模拟完整模态设置。在缺失模态场景中,我们的分割框架显著优于当前最先进的脑肿瘤分割技术。

相似文献

9
Learning With Privileged Multimodal Knowledge for Unimodal Segmentation.基于特权多模态知识的单模态分割学习。
IEEE Trans Med Imaging. 2022 Mar;41(3):621-632. doi: 10.1109/TMI.2021.3119385. Epub 2022 Mar 2.
10

本文引用的文献

3
Radiomics and radiogenomics in gliomas: a contemporary update.脑胶质瘤的影像组学和放射组学:当代进展。
Br J Cancer. 2021 Aug;125(5):641-657. doi: 10.1038/s41416-021-01387-w. Epub 2021 May 6.
6
Meta-Transfer Learning Through Hard Tasks.元迁移学习通过硬任务。
IEEE Trans Pattern Anal Mach Intell. 2022 Mar;44(3):1443-1456. doi: 10.1109/TPAMI.2020.3018506. Epub 2022 Feb 3.
9
Multimodal MR Synthesis via Modality-Invariant Latent Representation.基于模态不变潜在表示的多模态磁共振合成。
IEEE Trans Med Imaging. 2018 Mar;37(3):803-814. doi: 10.1109/TMI.2017.2764326. Epub 2017 Oct 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验