Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
Int J Mol Sci. 2017 Oct 20;18(10):2191. doi: 10.3390/ijms18102191.
Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP)-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO₂ exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.
热应激是一种主要的非生物胁迫,对植物构成严重威胁。植物中的热响应机制复杂而精细。热信号转导和光合作用高度敏感。因此,深入了解热应激信号转导和光合作用中的分子机制对于保护作物产量是必要的。目前的高通量蛋白质组学研究为植物中潜在的热响应信号通路和光合作用调节提供了更多有用的信息。一些信号成分,如鸟苷三磷酸(GTP)结合蛋白、核苷二磷酸激酶、膜联蛋白和油菜素内酯不敏感 I-激酶结构域相互作用蛋白 114,被认为在热信号转导中很重要。此外,光合作用蛋白的不同蛋白模式表明,对气孔 CO₂交换、光系统 II、卡尔文循环、ATP 合成和叶绿素生物合成的调节对于植物耐热性至关重要。