Suppr超能文献

A激酶锚定蛋白350(AKAP350A)的C末端区域能够形成微管成核中心,并与中心粒周围蛋白相互作用。

The C-terminal region of A-kinase anchor protein 350 (AKAP350A) enables formation of microtubule-nucleation centers and interacts with pericentriolar proteins.

作者信息

Kolobova Elena, Roland Joseph T, Lapierre Lynne A, Williams Janice A, Mason Twila A, Goldenring James R

机构信息

From the Departments of Surgery and.

the Epithelial Biology Center, Vanderbilt University School of Medicine, and.

出版信息

J Biol Chem. 2017 Dec 15;292(50):20394-20409. doi: 10.1074/jbc.M117.806018. Epub 2017 Oct 20.

Abstract

Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.

摘要

动物细胞中的微管从中心体和顺式高尔基体池组装(成核)。A激酶锚定蛋白350 kDa(AKAP350A,也称为AKAP450/CG-NAP/AKAP9)是一种大型支架蛋白,位于中心体和高尔基体。先前的研究结果表明,AKAP350对这两个位置的微管动力学很重要,但这种支架蛋白如何组装微管成核机制尚不清楚。在这里,我们发现AKAP350A C端三分之一的过表达,即增强型绿色荧光蛋白-AKAP350A(2691-3907),会诱导多个微管成核中心(MTNCs)的形成。然而,这些诱导的MTNCs缺乏“真正的”中心粒蛋白,如Cep135。用AKAP350A截短体进行的定位分析表明,AKAP350A包含负责促进或抑制多个MTNCs形成的离散区域。此外,绿色荧光蛋白-AKAP350A(2691-3907)将几种中心粒周围蛋白招募到MTNCs,包括γ-微管蛋白、中心粒外周蛋白、Cep68、Cep170和Cdk5RAP2。蛋白质组学分析表明,Cdk5RAP2和Cep170都与AKAP350A的微管成核促进区域相互作用,而Cep68与AKAP350A的远端C端区域相互作用。酵母双杂交试验确定了Cep170与AKAP350A的直接相互作用。进行了超分辨率和去卷积显微镜分析以确定AKAP350A与中心体的关联,这些研究表明AKAP350A跨越中心粒之间的桥梁,在连接区域与根蛋白和Cep68共定位。小干扰RNA介导的AKAP35A缺失导致Cep68和Cep170从中心体移位。这些结果表明,AKAP350A作为中心体微管成核相关因子的支架,并协调与中心粒间桥相关的蛋白质复合物的组装。

相似文献

2
A centrosomal scaffold shows some self-control.
J Biol Chem. 2017 Dec 15;292(50):20410-20411. doi: 10.1074/jbc.H117.806018.
3
Cep68 and Cep215 (Cdk5rap2) are required for centrosome cohesion.
J Cell Sci. 2007 Dec 15;120(Pt 24):4321-31. doi: 10.1242/jcs.020248. Epub 2007 Nov 27.
5
The DNA replication protein Cdc6 inhibits the microtubule-organizing activity of the centrosome.
J Biol Chem. 2017 Sep 29;292(39):16267-16276. doi: 10.1074/jbc.M116.763680. Epub 2017 Aug 21.
6
The dual role of the centrosome in organizing the microtubule network in interphase.
EMBO Rep. 2018 Nov;19(11). doi: 10.15252/embr.201845942. Epub 2018 Sep 17.
7
STED nanoscopy of the centrosome linker reveals a CEP68-organized, periodic rootletin network anchored to a C-Nap1 ring at centrioles.
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):E2246-E2253. doi: 10.1073/pnas.1716840115. Epub 2018 Feb 20.
8
Cep72 regulates the localization of key centrosomal proteins and proper bipolar spindle formation.
EMBO J. 2009 Jul 22;28(14):2066-76. doi: 10.1038/emboj.2009.161. Epub 2009 Jun 18.

引用本文的文献

2
MLL/WDR5 complex recruits centriolar satellite protein Cep72 to regulate microtubule nucleation and spindle formation.
Sci Adv. 2024 Dec 13;10(50):eadn0086. doi: 10.1126/sciadv.adn0086. Epub 2024 Dec 11.
3
The E3 ligase Poe promotes Pericentrin degradation.
Mol Biol Cell. 2023 Aug 1;34(9):br15. doi: 10.1091/mbc.E22-11-0534. Epub 2023 Jun 21.
4
Yeast Two-Hybrid Screen Identifies PKA-Riα Interacting Proteins during Mouse Spermiogenesis.
Genes (Basel). 2021 Nov 30;12(12):1941. doi: 10.3390/genes12121941.
5
FBF1 deficiency promotes beiging and healthy expansion of white adipose tissue.
Cell Rep. 2021 Aug 3;36(5):109481. doi: 10.1016/j.celrep.2021.109481.
6
The TBC1D31/praja2 complex controls primary ciliogenesis through PKA-directed OFD1 ubiquitylation.
EMBO J. 2021 May 17;40(10):e106503. doi: 10.15252/embj.2020106503. Epub 2021 May 2.
7
Spatial and proteomic profiling reveals centrosome-independent features of centriolar satellites.
EMBO J. 2019 Jul 15;38(14):e101109. doi: 10.15252/embj.2018101109. Epub 2019 Jun 3.
8
A SEPT1-based scaffold is required for Golgi integrity and function.
J Cell Sci. 2019 Feb 1;132(3):jcs225557. doi: 10.1242/jcs.225557.
9
Regulating a key mitotic regulator, polo-like kinase 1 (PLK1).
Cytoskeleton (Hoboken). 2018 Nov;75(11):481-494. doi: 10.1002/cm.21504. Epub 2018 Dec 7.
10
A centrosomal scaffold shows some self-control.
J Biol Chem. 2017 Dec 15;292(50):20410-20411. doi: 10.1074/jbc.H117.806018.

本文引用的文献

1
Molecular Pathway of Microtubule Organization at the Golgi Apparatus.
Dev Cell. 2016 Oct 10;39(1):44-60. doi: 10.1016/j.devcel.2016.08.009. Epub 2016 Sep 22.
3
PLK1-dependent activation of LRRK1 regulates spindle orientation by phosphorylating CDK5RAP2.
Nat Cell Biol. 2015 Aug;17(8):1024-35. doi: 10.1038/ncb3204. Epub 2015 Jul 20.
4
Cep68 can be regulated by Nek2 and SCF complex.
Eur J Cell Biol. 2015 Mar-Apr;94(3-4):162-72. doi: 10.1016/j.ejcb.2015.01.004. Epub 2015 Feb 4.
5
Solving the centriole disengagement puzzle.
Nat Cell Biol. 2015 Jan;17(1):3-5. doi: 10.1038/ncb3087.
7
Centlein mediates an interaction between C-Nap1 and Cep68 to maintain centrosome cohesion.
J Cell Sci. 2014 Apr 15;127(Pt 8):1631-9. doi: 10.1242/jcs.139451. Epub 2014 Feb 19.
8
Mapping molecules to structure: unveiling secrets of centriole and cilia assembly with near-atomic resolution.
Curr Opin Cell Biol. 2014 Feb;26:96-106. doi: 10.1016/j.ceb.2013.12.001. Epub 2013 Dec 25.
9
Centrosomal AKAP350 modulates the G/S transition.
Cell Logist. 2013 Jan 1;3(1):e26331. doi: 10.4161/cl.26331.
10
Importance of the CEP215-pericentrin interaction for centrosome maturation during mitosis.
PLoS One. 2014 Jan 22;9(1):e87016. doi: 10.1371/journal.pone.0087016. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验