Sarkar Souvarish, Malovic Emir, Harishchandra Dilshan S, Ghaisas Shivani, Panicker Nikhil, Charli Adhithiya, Palanisamy Bharathi N, Rokad Dharmin, Jin Huajun, Anantharam Vellareddy, Kanthasamy Arthi, Kanthasamy Anumantha G
Department of Biomedical Science, Iowa State University, Ames, IA 50011 USA.
Present Address: Perelman School of Medicine, Abramson Family Cancer Research Institute, University of Pennsylvania, 421 Curie Boulevard, 642 BRB II/III, Philadelphia, PA 19104 USA.
NPJ Parkinsons Dis. 2017 Oct 17;3:30. doi: 10.1038/s41531-017-0032-2. eCollection 2017.
The NLRP3 inflammasome signaling pathway is a major contributor to the neuroinflammatory process in the central nervous system. Oxidative stress and mitochondrial dysfunction are key pathophysiological processes of many chronic neurodegenerative diseases, including Parkinson's disease (PD). However, the inter-relationship between mitochondrial defects and neuroinflammation is not well understood. In the present study, we show that impaired mitochondrial function can augment the NLRP3 inflammasome-driven proinflammatory cascade in microglia. Primary mouse microglia treated with the common inflammogen LPS increased NLRP3 and pro-IL-1β expression. Interestingly, exposure of LPS-primed microglial cells to the mitochondrial complex-I inhibitory pesticides rotenone and tebufenpyrad specifically potentiated the NLRP3 induction, ASC speck formation and pro-IL-1β processing to IL-1β in a dose-dependent manner, indicating that mitochondrial impairment heightened the NLRP3 inflammasome-mediated proinflammatory response in microglia. The neurotoxic pesticide-induced NLRP3 inflammasome activation was accompanied by bioenergetic defects and lysosomal dysfunction in microglia. Furthermore, the pesticides enhanced mitochondrial ROS generation in primary microglia, while amelioration of mitochondria-derived ROS by the mitochondria-targeted antioxidant mito-apocynin completely abolished IL-1β release, indicating mitochondrial ROS drives potentiation of the NLRP3 inflammasome in microglia. Exposure to conditioned media obtained from mitochondrial inhibitor-treated, LPS-primed microglial cells, but not unprimed cells, induced dopaminergic neurodegeneration in cultured primary mesencephalic and human dopaminergic neuronal cells (LUHMES). Notably, our in vivo results with chronic rotenone rodent models of PD further support the activation of proinflammatory NLRP3 inflammasome signaling due to mitochondrial dysfunction. Collectively, our results demonstrate that mitochondrial impairment in microglia can amplify NLRP3 inflammasome signaling, which augments the dopaminergic neurodegenerative process.
NLRP3炎性小体信号通路是中枢神经系统神经炎症过程的主要促成因素。氧化应激和线粒体功能障碍是包括帕金森病(PD)在内的许多慢性神经退行性疾病的关键病理生理过程。然而,线粒体缺陷与神经炎症之间的相互关系尚未完全清楚。在本研究中,我们表明线粒体功能受损可增强小胶质细胞中NLRP3炎性小体驱动的促炎级联反应。用常见炎性原脂多糖(LPS)处理的原代小鼠小胶质细胞会增加NLRP3和前白细胞介素-1β(pro-IL-1β)的表达。有趣的是,将经LPS预处理的小胶质细胞暴露于线粒体复合体I抑制性农药鱼藤酮和戊菌唑,会以剂量依赖的方式特异性增强NLRP3的诱导、凋亡相关斑点样蛋白(ASC)斑点形成以及pro-IL-1β加工为白细胞介素-1β(IL-1β),这表明线粒体损伤增强了小胶质细胞中NLRP3炎性小体介导的促炎反应。神经毒性农药诱导的NLRP3炎性小体激活伴随着小胶质细胞中的生物能量缺陷和溶酶体功能障碍。此外,这些农药增强了原代小胶质细胞中线粒体活性氧(ROS)的产生,而线粒体靶向抗氧化剂米托蒽醌对线粒体来源ROS的改善完全消除了IL-1β的释放,表明线粒体ROS驱动了小胶质细胞中NLRP3炎性小体的增强。暴露于从经线粒体抑制剂处理、LPS预处理的小胶质细胞获得的条件培养基中,但不包括未预处理细胞的条件培养基,会在培养的原代中脑和人多巴胺能神经元细胞(LUHMES)中诱导多巴胺能神经变性。值得注意的是,我们对PD慢性鱼藤酮啮齿动物模型的体内研究结果进一步支持了由于线粒体功能障碍导致促炎性NLRP3炎性小体信号通路的激活。总体而言,我们的结果表明小胶质细胞中的线粒体损伤可放大NLRP3炎性小体信号通路,从而加剧多巴胺能神经变性过程。