Mahmood Amama, Zainab Rida, Ahmad Rushda Basir, Saeed Maryam, Kamboh Awais Mehmood
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:1034-1037. doi: 10.1109/EMBC.2017.8037003.
Brain Computer Interfaces (BCIs) serve as an integration tool between acquired brain signals and external devices. Precise classification of the acquired brain signals with the least misclassification error is an arduous task. Existing techniques for classification of multi-class motor imagery electroencephalogram (EEG) have low accuracy and are computationally inefficient. This paper introduces a classification algorithm, which uses two frequency ranges, mu and beta rythms, for feature extraction using common spatial pattern (CSP) along with support vector machine (SVM) for classification. The technique uses only four frequency bands with no feature reduction and consequently less computational cost. The implementation of this algorithm on BCI competition III dataset IIIa, resulted in the highest classification accuracy in comparison to existing algorithms. A mean accuracy of 85.5 for offline classification has been achieved using this technique.
脑机接口(BCIs)作为采集到的脑信号与外部设备之间的集成工具。以最小的误分类误差对采集到的脑信号进行精确分类是一项艰巨的任务。现有的多类运动想象脑电图(EEG)分类技术准确率低且计算效率低下。本文介绍了一种分类算法,该算法使用μ和β节律这两个频率范围,通过共同空间模式(CSP)进行特征提取,并结合支持向量机(SVM)进行分类。该技术仅使用四个频段,无需特征约简,因此计算成本更低。与现有算法相比,该算法在脑机接口竞赛III数据集IIIa上的实现取得了最高的分类准确率。使用该技术离线分类的平均准确率达到了85.5。