Suppr超能文献

基于相关的共同空间模式(CCSP):一种用于运动想象信号分类的 CSP 的新扩展。

Correlation-based common spatial pattern (CCSP): A novel extension of CSP for classification of motor imagery signal.

机构信息

Department of Biomedical Engineering, University of Tabriz, Tabriz, East Azarbijan, Iran.

Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.

出版信息

PLoS One. 2021 Mar 31;16(3):e0248511. doi: 10.1371/journal.pone.0248511. eCollection 2021.

Abstract

Common spatial pattern (CSP) is shown to be an effective pre-processing algorithm in order to discriminate different classes of motor-based EEG signals by obtaining suitable spatial filters. The performance of these filters can be improved by regularized CSP, in which available prior information is added in terms of regularization terms into the objective function of conventional CSP. Variety of prior information can be used in this way. In this paper, we used time correlation between different classes of EEG signal as the prior information, which is clarified similarity between different classes of signal for regularizing CSP. Furthermore, the proposed objective function can be easily extended to more than two-class problems. We used three different standard datasets to evaluate the performance of the proposed method. Correlation-based CSP (CCSP) outperformed original CSP as well as the existing regularized CSP, Principle Component Cnalysis (PCA) and Fisher Discriminate Analysis (FDA) in both two-class and multi-class scenarios. The simulation results showed that the proposed method outperformed conventional CSP by 6.9% in 2-class and 2.23% in multi-class problem in term of mean classification accuracy.

摘要

共空间模式(CSP)被证明是一种有效的预处理算法,通过获得合适的空间滤波器,可以区分不同类别的基于运动的脑电图信号。通过正则化 CSP 可以提高这些滤波器的性能,在正则化 CSP 的目标函数中,以正则化项的形式添加了可用的先验信息。可以以这种方式使用各种先验信息。在本文中,我们将不同类别的脑电图信号之间的时间相关性用作先验信息,这说明了正则化 CSP 中不同类别的信号之间的相似性。此外,所提出的目标函数可以很容易地扩展到多类问题。我们使用了三个不同的标准数据集来评估所提出方法的性能。在两类和多类情况下,基于相关的 CSP(CCSP)在性能上优于原始 CSP 以及现有的正则化 CSP、主成分分析(PCA)和 Fisher 判别分析(FDA)。仿真结果表明,所提出的方法在两类问题中的平均分类准确率比传统 CSP 高出 6.9%,在多类问题中的平均分类准确率比传统 CSP 高出 2.23%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eee6/8011783/273155ffc2ee/pone.0248511.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验