Rahman Md Asadur, Uddin Mohammad Shorif, Ahmad Mohiuddin
1Department of Biomedical Engineering, Khulna University of Engineering & Technology (KUET), Khulna, Bangladesh.
2Department of Computer Science and Engineering, Jahangirnagar University, Dhaka, Bangladesh.
Health Inf Sci Syst. 2019 Oct 12;7(1):22. doi: 10.1007/s13755-019-0081-5. eCollection 2019 Dec.
Practical brain-computer interface (BCI) demands the learning-based adaptive model that can handle diverse problems. To implement a BCI, usually functional near-infrared spectroscopy (fNIR) is used for measuring functional changes in brain oxygenation and electroencephalography (EEG) for evaluating the neuronal electric potential regarding the psychophysiological activity. Since the fNIR modality has an issue of temporal resolution, fNIR alone is not enough to achieve satisfactory classification accuracy as multiple neural stimuli are produced by voluntary and imagery movements. This leads us to make a combination of fNIR and EEG with a view to developing a BCI model for the classification of the brain signals of the voluntary and imagery movements. This work proposes a novel approach to prepare functional neuroimages from the fNIR and EEG using eight different movement-related stimuli. The neuroimages are used to train a convolutional neural network (CNN) to formulate a predictive model for classifying the combined fNIR-EEG data. The results reveal that the combined fNIR-EEG modality approach along with a CNN provides improved classification accuracy compared to a single modality and conventional classifiers. So, the outcomes of the proposed research work will be very helpful in the implementation of the finer BCI system.
实用的脑机接口(BCI)需要基于学习的自适应模型来处理各种问题。为了实现BCI,通常使用功能近红外光谱(fNIR)来测量大脑氧合的功能变化,并使用脑电图(EEG)来评估与心理生理活动相关的神经元电势。由于fNIR模态存在时间分辨率问题,当由自愿运动和想象运动产生多种神经刺激时,仅fNIR不足以实现令人满意的分类准确率。这促使我们将fNIR和EEG结合起来,以期开发一种用于对自愿运动和想象运动的脑信号进行分类的BCI模型。这项工作提出了一种新颖的方法,利用八种不同的与运动相关的刺激从fNIR和EEG中制备功能神经图像。这些神经图像用于训练卷积神经网络(CNN),以构建一个预测模型来对组合的fNIR-EEG数据进行分类。结果表明,与单一模态和传统分类器相比,fNIR-EEG组合模态方法与CNN相结合可提高分类准确率。因此,所提出的研究工作成果将对更精细的BCI系统的实现非常有帮助。