AbuHassan Kamal J, Bakhori Noremylia M, Kusnin Norzila, Azmi Umi Z M, Tania Marzia H, Evans Benjamin A, Yusof Nor A, Hossain M A
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4512-4515. doi: 10.1109/EMBC.2017.8037859.
Tuberculosis (TB) remains one of the most devastating infectious diseases and its treatment efficiency is majorly influenced by the stage at which infection with the TB bacterium is diagnosed. The available methods for TB diagnosis are either time consuming, costly or not efficient. This study employs a signal generation mechanism for biosensing, known as Plasmonic ELISA, and computational intelligence to facilitate automatic diagnosis of TB. Plasmonic ELISA enables the detection of a few molecules of analyte by the incorporation of smart nanomaterials for better sensitivity of the developed detection system. The computational system uses k-means clustering and thresholding for image segmentation. This paper presents the results of the classification performance of the Plasmonic ELISA imaging data by using various types of classifiers. The five-fold cross-validation results show high accuracy rate (>97%) in classifying TB images using the entire data set. Future work will focus on developing an intelligent mobile-enabled expert system to diagnose TB in real-time. The intelligent system will be clinically validated and tested in collaboration with healthcare providers in Malaysia.
结核病仍然是最具破坏性的传染病之一,其治疗效果主要受结核杆菌感染诊断阶段的影响。现有的结核病诊断方法要么耗时、成本高,要么效率低下。本研究采用一种称为表面等离子体激元酶联免疫吸附测定(Plasmonic ELISA)的生物传感信号生成机制和计算智能技术来促进结核病的自动诊断。表面等离子体激元酶联免疫吸附测定通过结合智能纳米材料来提高所开发检测系统的灵敏度,从而能够检测到少量的分析物分子。该计算系统使用k均值聚类和阈值处理进行图像分割。本文展示了使用各种类型分类器对表面等离子体激元酶联免疫吸附测定成像数据进行分类的性能结果。五折交叉验证结果表明,使用整个数据集对结核病图像进行分类时准确率很高(>97%)。未来的工作将集中在开发一个智能移动专家系统以实时诊断结核病。该智能系统将与马来西亚的医疗服务提供者合作进行临床验证和测试。