Yonekura Asami, Kawanaka Hiroharu, Prasath V B Surya, Aronow Bruce J, Takase Haruhiko
1Graduate School of Engineering, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507 Japan.
2Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA.
Biomed Eng Lett. 2018 Jun 25;8(3):321-327. doi: 10.1007/s13534-018-0077-0. eCollection 2018 Aug.
In the field of computational histopathology, computer-assisted diagnosis systems are important in obtaining patient-specific diagnosis for various diseases and help precision medicine. Therefore, many studies on automatic analysis methods for digital pathology images have been reported. In this work, we discuss an automatic feature extraction and disease stage classification method for glioblastoma multiforme (GBM) histopathological images. In this paper, we use deep convolutional neural networks (Deep CNNs) to acquire feature descriptors and a classification scheme simultaneously. Further, comparisons with other popular CNNs objectively as well as quantitatively in this challenging classification problem is undertaken. The experiments using Glioma images from The Cancer Genome Atlas shows that we obtain average classification accuracy for our network and for higher cross validation folds other networks perform similarly with a higher accuracy of . Deep CNNs could extract significant features from the GBM histopathology images with high accuracy. Overall, the disease stage classification of GBM from histopathological images with deep CNNs is very promising and with the availability of large scale histopathological image data the deep CNNs are well suited in tackling this challenging problem.
在计算组织病理学领域,计算机辅助诊断系统对于获取针对各种疾病的患者特异性诊断并助力精准医学至关重要。因此,已有许多关于数字病理图像自动分析方法的研究报道。在这项工作中,我们探讨了一种针对多形性胶质母细胞瘤(GBM)组织病理学图像的自动特征提取和疾病阶段分类方法。在本文中,我们使用深度卷积神经网络(深度卷积神经网络)同时获取特征描述符和分类方案。此外,在这个具有挑战性的分类问题中,我们对其他流行的卷积神经网络进行了客观和定量的比较。使用来自癌症基因组图谱的胶质瘤图像进行的实验表明,我们的网络获得了平均分类准确率,对于更高的交叉验证折叠,其他网络表现类似,准确率更高。深度卷积神经网络可以从GBM组织病理学图像中高精度地提取重要特征。总体而言,使用深度卷积神经网络对GBM组织病理学图像进行疾病阶段分类非常有前景,并且随着大规模组织病理学图像数据的可得性,深度卷积神经网络非常适合解决这个具有挑战性的问题。