Suppr超能文献

使用深度卷积神经网络对多形性胶质母细胞瘤组织病理学图像进行自动疾病分期分类。

Automatic disease stage classification of glioblastoma multiforme histopathological images using deep convolutional neural network.

作者信息

Yonekura Asami, Kawanaka Hiroharu, Prasath V B Surya, Aronow Bruce J, Takase Haruhiko

机构信息

1Graduate School of Engineering, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507 Japan.

2Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229 USA.

出版信息

Biomed Eng Lett. 2018 Jun 25;8(3):321-327. doi: 10.1007/s13534-018-0077-0. eCollection 2018 Aug.

Abstract

In the field of computational histopathology, computer-assisted diagnosis systems are important in obtaining patient-specific diagnosis for various diseases and help precision medicine. Therefore, many studies on automatic analysis methods for digital pathology images have been reported. In this work, we discuss an automatic feature extraction and disease stage classification method for glioblastoma multiforme (GBM) histopathological images. In this paper, we use deep convolutional neural networks (Deep CNNs) to acquire feature descriptors and a classification scheme simultaneously. Further, comparisons with other popular CNNs objectively as well as quantitatively in this challenging classification problem is undertaken. The experiments using Glioma images from The Cancer Genome Atlas shows that we obtain average classification accuracy for our network and for higher cross validation folds other networks perform similarly with a higher accuracy of . Deep CNNs could extract significant features from the GBM histopathology images with high accuracy. Overall, the disease stage classification of GBM from histopathological images with deep CNNs is very promising and with the availability of large scale histopathological image data the deep CNNs are well suited in tackling this challenging problem.

摘要

在计算组织病理学领域,计算机辅助诊断系统对于获取针对各种疾病的患者特异性诊断并助力精准医学至关重要。因此,已有许多关于数字病理图像自动分析方法的研究报道。在这项工作中,我们探讨了一种针对多形性胶质母细胞瘤(GBM)组织病理学图像的自动特征提取和疾病阶段分类方法。在本文中,我们使用深度卷积神经网络(深度卷积神经网络)同时获取特征描述符和分类方案。此外,在这个具有挑战性的分类问题中,我们对其他流行的卷积神经网络进行了客观和定量的比较。使用来自癌症基因组图谱的胶质瘤图像进行的实验表明,我们的网络获得了平均分类准确率,对于更高的交叉验证折叠,其他网络表现类似,准确率更高。深度卷积神经网络可以从GBM组织病理学图像中高精度地提取重要特征。总体而言,使用深度卷积神经网络对GBM组织病理学图像进行疾病阶段分类非常有前景,并且随着大规模组织病理学图像数据的可得性,深度卷积神经网络非常适合解决这个具有挑战性的问题。

相似文献

1
Automatic disease stage classification of glioblastoma multiforme histopathological images using deep convolutional neural network.
Biomed Eng Lett. 2018 Jun 25;8(3):321-327. doi: 10.1007/s13534-018-0077-0. eCollection 2018 Aug.
4
Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.
Comput Med Imaging Graph. 2017 Nov;61:2-13. doi: 10.1016/j.compmedimag.2017.06.001. Epub 2017 Jun 16.
7
Automated glioma grading on conventional MRI images using deep convolutional neural networks.
Med Phys. 2020 Jul;47(7):3044-3053. doi: 10.1002/mp.14168. Epub 2020 May 11.
9
Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks.
Front Oncol. 2021 Jun 25;11:665929. doi: 10.3389/fonc.2021.665929. eCollection 2021.
10
Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images.
Comput Biol Med. 2022 Oct;149:105943. doi: 10.1016/j.compbiomed.2022.105943. Epub 2022 Aug 12.

引用本文的文献

3
Multimodal Ensemble Fusion Deep Learning Using Histopathological Images and Clinical Data for Glioma Subtype Classification.
IEEE Access. 2025;13:57780-57797. doi: 10.1109/access.2025.3556713. Epub 2025 Apr 1.
4
Context aware machine learning techniques for brain tumor classification and detection - A review.
Heliyon. 2025 Jan 13;11(2):e41835. doi: 10.1016/j.heliyon.2025.e41835. eCollection 2025 Jan 30.
5
7
A multi-center performance assessment for automated histopathological classification and grading of glioma using whole slide images.
iScience. 2023 Sep 29;26(11):108041. doi: 10.1016/j.isci.2023.108041. eCollection 2023 Nov 17.
8
Histopathological auxiliary system for brain tumour (HAS-Bt) based on weakly supervised learning using a WHO CNS5-style pipeline.
J Neurooncol. 2023 May;163(1):71-82. doi: 10.1007/s11060-023-04306-6. Epub 2023 May 13.

本文引用的文献

1
Deep-learning-based automatic computer-aided diagnosis system for diabetic retinopathy.
Biomed Eng Lett. 2017 Aug 31;8(1):41-57. doi: 10.1007/s13534-017-0047-y. eCollection 2018 Feb.
2
Computer-assisted brain tumor type discrimination using magnetic resonance imaging features.
Biomed Eng Lett. 2017 Oct 4;8(1):5-28. doi: 10.1007/s13534-017-0050-3. eCollection 2018 Feb.
3
Automatic diagnosis of tuberculosis disease based on Plasmonic ELISA and color-based image classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4512-4515. doi: 10.1109/EMBC.2017.8037859.
4
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
5
Mitosis detection in breast cancer histology images with deep neural networks.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):411-8. doi: 10.1007/978-3-642-40763-5_51.
6
Histopathological image analysis: a review.
IEEE Rev Biomed Eng. 2009;2:147-71. doi: 10.1109/RBME.2009.2034865. Epub 2009 Oct 30.
7
Cell-graph mining for breast tissue modeling and classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5311-4. doi: 10.1109/IEMBS.2007.4353540.
8
Evidence-based medicine, medical decision analysis, and pathology.
Hum Pathol. 2004 Oct;35(10):1179-88. doi: 10.1016/j.humpath.2004.06.004.
9
A feature set for cytometry on digitized microscopic images.
Anal Cell Pathol. 2003;25(1):1-36. doi: 10.1155/2003/548678.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验