Sulpizio Simone, Kuroda Kaori, Dalsasso Matteo, Asakawa Tetsuya, Bornstein Marc H, Doi Hirokazu, Esposito Gianluca, Shinohara Kazuyuki
Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
Department of Neurobiology and Behavior, Nagasaki University, Graduate School of Biomedical Science, Japan.
Neurosci Res. 2018 Aug;133:21-27. doi: 10.1016/j.neures.2017.10.008. Epub 2017 Oct 20.
The aim of the present work was a cross-linguistic generalization of Inoue et al.'s (2011) algorithm for discriminating infant- (IDS) vs. adult-directed speech (ADS). IDS is the way in which mothers communicate with infants; it is a universal communicative property, with some cross-linguistic differences. Inoue et al. (2011) implemented a machine algorithm that, by using a mel-frequency cepstral coefficient and a hidden Markov model, discriminated IDS from ADS in Japanese. We applied the original algorithm to two other languages that are very different from Japanese - Italian and German - and then tested the algorithm on Italian and German databases of IDS and ADS. Our results showed that: First, in accord with the extant literature, IDS is realized in a similar way across languages; second, the algorithm performed well in both languages and close to that reported for Japanese. The implications for the algorithm are discussed.
本研究的目的是对井上等人(2011年)用于区分婴儿导向性言语(IDS)和成人导向性言语(ADS)的算法进行跨语言推广。IDS是母亲与婴儿交流的方式;它是一种普遍的交流特性,存在一些跨语言差异。井上等人(2011年)实现了一种机器算法,该算法通过使用梅尔频率倒谱系数和隐马尔可夫模型,在日语中区分IDS和ADS。我们将原始算法应用于另外两种与日语差异很大的语言——意大利语和德语,然后在意大利语和德语的IDS和ADS数据库上对该算法进行测试。我们的结果表明:第一,与现有文献一致,IDS在不同语言中的实现方式相似;第二,该算法在两种语言中都表现良好,且接近在日语中报告的性能。文中讨论了该算法的意义。