Department of Plant Biology, University of Illinois, Urbana IL 61801, USA
Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
Philos Trans R Soc Lond B Biol Sci. 2017 Dec 5;372(1735). doi: 10.1098/rstb.2016.0426.
Neutral evolution assumes that there are no selective forces distinguishing different variants in a population. Despite this striking assumption, many recent studies have sought to assess whether neutrality can provide a good description of different episodes of cultural change. One approach has been to test whether neutral predictions are consistent with observed progeny distributions, recording the number of variants that have produced a given number of new instances within a specified time interval: a classic example is the distribution of baby names. Using an overlapping generations model, we show that these distributions consist of two phases: a power-law phase with a constant exponent of [Formula: see text], followed by an exponential cut-off for variants with very large numbers of progeny. Maximum-likelihood estimations of the model parameters provide a direct way to establish whether observed empirical patterns are consistent with neutral evolution. We apply our approach to a complete dataset of baby names from Australia. Crucially, we show that analyses based on only the most popular variants, as is often the case in studies of cultural evolution, can provide misleading evidence for underlying transmission hypotheses. While neutrality provides a plausible description of progeny distributions of abundant variants, rare variants deviate from neutrality. Further, we develop a simulation framework that allows the detection of alternative cultural transmission processes. We show that anti-novelty bias is able to replicate the complete progeny distribution of the Australian dataset.This article is part of the themed issue 'Process and pattern in innovations from cells to societies'.
中性进化假设在一个群体中没有选择力量来区分不同的变体。尽管有这个惊人的假设,但最近许多研究都试图评估中性是否可以很好地描述文化变化的不同阶段。一种方法是检验中性预测是否与观察到的后代分布一致,即在指定的时间间隔内记录产生给定数量新实例的变体数量:一个经典的例子是婴儿名字的分布。我们使用重叠世代模型表明,这些分布由两个阶段组成:具有[公式:见文本]常数指数的幂律阶段,以及对于具有大量后代的变体的指数截止。模型参数的最大似然估计提供了一种直接的方法来确定观察到的经验模式是否与中性进化一致。我们将我们的方法应用于澳大利亚完整的婴儿名字数据集。至关重要的是,我们表明,基于最流行变体的分析(在文化进化研究中经常如此)可能会为潜在的传播假设提供误导性证据。虽然中性为丰富变体的后代分布提供了一个合理的描述,但稀有变体偏离了中性。此外,我们开发了一个模拟框架,允许检测替代的文化传播过程。我们表明,反新颖性偏见能够复制澳大利亚数据集的完整后代分布。本文是主题为“从细胞到社会的创新过程和模式”的特刊的一部分。