Suppr超能文献

监测推特上的事件驱动动态:白俄罗斯的一个案例研究。

Monitoring event-driven dynamics on Twitter: a case study in Belarus.

作者信息

Rice Natalie M, Horne Benjamin D, Luther Catherine A, Borycz Joshua D, Allard Suzie L, Ruck Damian J, Fitzgerald Michael, Manaev Oleg, Prins Brandon C, Taylor Maureen, Bentley R Alexander

机构信息

Center for Information and Communication Studies, University of Tennessee, Knoxville, TN 37996 USA.

School of Information Sciences, University of Tennessee, Knoxville, TN 37996 USA.

出版信息

SN Soc Sci. 2022;2(4):36. doi: 10.1007/s43545-022-00330-x. Epub 2022 Apr 8.

Abstract

UNLABELLED

Analysts of social media differ in their emphasis on the effects of message content versus social network structure. The balance of these factors may change substantially across time. When a major event occurs, initial independent reactions may give way to more social diffusion of interpretations of the event among different communities, including those committed to disinformation. Here, we explore these dynamics through a case study analysis of the Russian-language Twitter content emerging from Belarus before and after its presidential election of August 9, 2020. From these Russian-language tweets, we extracted a set of topics that characterize the social media data and construct networks to represent the sharing of these topics before and after the election. The case study in Belarus reveals how misinformation can be re-invigorated in discourse through the novelty of a major event. More generally, it suggests how audience networks can shift from influentials dispensing information before an event to a de-centralized sharing of information after it.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s43545-022-00330-x.

摘要

未标注

社交媒体分析人士对信息内容与社交网络结构的影响侧重点各异。这些因素的平衡可能会随时间发生显著变化。当重大事件发生时,最初的独立反应可能会让位于事件解读在不同群体(包括那些传播虚假信息的群体)之间更多的社会传播。在此,我们通过对2020年8月9日白俄罗斯总统选举前后出现的俄语推特内容进行案例研究分析,来探究这些动态变化。从这些俄语推文中,我们提取了一组表征社交媒体数据的主题,并构建网络来呈现选举前后这些主题的分享情况。白俄罗斯的案例研究揭示了错误信息如何通过重大事件的新颖性在话语中重新活跃起来。更普遍地说,它表明了受众网络如何从事件发生前有影响力的人传播信息,转变为事件发生后信息的分散式分享。

补充信息

在线版本包含可在10.1007/s43545-022-00330-x获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1c1/8990676/7ab91ea603a2/43545_2022_330_Fig1_HTML.jpg

相似文献

7
The Politicization of Ivermectin Tweets During the COVID-19 Pandemic.新冠疫情期间伊维菌素推文的政治化现象
Open Forum Infect Dis. 2022 Jun 6;9(7):ofac263. doi: 10.1093/ofid/ofac263. eCollection 2022 Jul.

引用本文的文献

1
Conspiracy spillovers and geoengineering.阴谋蔓延与地球工程。
iScience. 2023 Feb 28;26(3):106166. doi: 10.1016/j.isci.2023.106166. eCollection 2023 Mar 17.

本文引用的文献

1
Examining the consumption of radical content on YouTube.考察 YouTube 上激进内容的消费情况。
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2101967118.
6
The spread of true and false news online.网络上真实和虚假新闻的传播。
Science. 2018 Mar 9;359(6380):1146-1151. doi: 10.1126/science.aap9559.
8
New online ecology of adversarial aggregates: ISIS and beyond.对抗性聚合体的新网络生态:ISIS 及其他。
Science. 2016 Jun 17;352(6292):1459-63. doi: 10.1126/science.aaf0675. Epub 2016 Jun 16.
10
Estimating a path through a map of decision making.通过决策地图估计一条路径。
PLoS One. 2014 Nov 4;9(11):e111022. doi: 10.1371/journal.pone.0111022. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验