Suppr超能文献

复杂传染的社会学习。

Social learning with complex contagion.

机构信息

Program in Applied Mathematics & Computational Science, University of Pennsylvania, Philadelphia, PA 19104.

Center for Mathematical Biology, University of Pennsylvania, Philadelphia, PA 19104.

出版信息

Proc Natl Acad Sci U S A. 2024 Dec 3;121(49):e2414291121. doi: 10.1073/pnas.2414291121. Epub 2024 Nov 27.

Abstract

Traditional models of social learning by imitation are based on simple contagion-where an individual may imitate a more successful neighbor following a single interaction. But real-world contagion processes are often complex, meaning that multiple exposures may be required before an individual considers changing their type. We introduce a framework that combines the concepts of simple payoff-biased imitation with complex contagion, to describe how social behaviors spread through a population. We formulate this model as a discrete time and state stochastic process in a finite population, and we derive its continuum limit as an ordinary differential equation that generalizes the replicator equation, a widely used dynamical model in evolutionary game theory. When applied to linear frequency-dependent games, social learning with complex contagion produces qualitatively different outcomes than traditional imitation dynamics: it can shift the Prisoner's Dilemma from a unique all-defector equilibrium to either a stable mixture of cooperators and defectors in the population, or a bistable system; it changes the Snowdrift game from a single to a bistable equilibrium; and it can alter the Coordination game from bistability at the boundaries to two internal equilibria. The long-term outcome depends on the balance between the complexity of the contagion process and the strength of selection that biases imitation toward more successful types. Our analysis intercalates the fields of evolutionary game theory with complex contagions, and it provides a synthetic framework to describe more realistic forms of behavioral change in social systems.

摘要

传统的模仿社会学习模型基于简单的传染——个体在单次互动后可能会模仿更成功的邻居。但现实世界中的传染过程通常很复杂,这意味着个体在考虑改变自己的类型之前,可能需要多次接触。我们引入了一个框架,将简单的收益偏向模仿与复杂传染的概念结合起来,以描述社会行为如何在人群中传播。我们将该模型表述为一个有限群体中的离散时间和状态随机过程,并将其连续极限推导为一个常微分方程,该方程推广了复制者方程,复制者方程是进化博弈论中广泛使用的动态模型。当应用于线性频率依赖博弈时,复杂传染的社会学习会产生与传统模仿动力学不同的定性结果:它可以将囚徒困境从唯一的全背叛者均衡转变为群体中合作者和背叛者的稳定混合,或双稳态系统;它改变了雪堆博弈从单一到双稳态的均衡;并且可以改变协调博弈从边界的双稳态到两个内部均衡。长期结果取决于传染过程的复杂性和选择偏向更成功类型的模仿的强度之间的平衡。我们的分析将进化博弈论与复杂传染相结合,并提供了一个综合框架来描述社会系统中更现实的行为变化形式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd64/11626147/01b4de089aa5/pnas.2414291121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验