Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
Department of Linguistic and Cultural Evolution, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.
Philos Trans R Soc Lond B Biol Sci. 2018 Apr 5;373(1743). doi: 10.1098/rstb.2017.0056.
One of the major challenges in cultural evolution is to understand why and how various forms of social learning are used in human populations, both now and in the past. To date, much of the theoretical work on social learning has been done in isolation of data, and consequently many insights focus on revealing the learning processes or the distributions of cultural variants that are expected to have evolved in human populations. In population genetics, recent methodological advances have allowed a greater understanding of the explicit demographic and/or selection mechanisms that underlie observed allele frequency distributions across the globe, and their change through time. In particular, generative frameworks-often using coalescent-based simulation coupled with approximate Bayesian computation (ABC)-have provided robust inferences on the human past, with no reliance on assumptions of equilibrium. Here, we demonstrate the applicability and utility of generative inference approaches to the field of cultural evolution. The framework advocated here uses observed population-level frequency data directly to establish the likely presence or absence of particular hypothesized learning strategies. In this context, we discuss the problem of equifinality and argue that, in the light of sparse cultural data and the multiplicity of possible social learning processes, the exclusion of those processes inconsistent with the observed data might be the most instructive outcome. Finally, we summarize the findings of generative inference approaches applied to a number of case studies.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'.
文化进化面临的主要挑战之一是理解为什么以及如何在人类群体中使用各种形式的社会学习,无论是现在还是过去。迄今为止,关于社会学习的大部分理论工作都是与数据分离进行的,因此许多研究结果都集中在揭示学习过程或文化变体的分布上,这些文化变体有望在人类群体中进化。在群体遗传学中,最近的方法进展使人们能够更好地理解潜在的人口和/或选择机制,这些机制是导致全球范围内观察到的等位基因频率分布及其随时间变化的基础。特别是,生成性框架——通常使用基于合并的模拟并结合近似贝叶斯计算 (ABC)——为人类过去提供了稳健的推断,而无需依赖平衡的假设。在这里,我们展示了生成性推断方法在文化进化领域的适用性和实用性。这里提倡的框架使用观察到的人口水平频率数据直接确定特定假设学习策略的可能存在或不存在。在这种情况下,我们讨论了等价性问题,并认为,鉴于文化数据的稀疏性和可能存在的多种社会学习过程,排除与观察到的数据不一致的那些过程可能是最有启发性的结果。最后,我们总结了将生成性推断方法应用于一些案例研究的结果。本文是主题为“弥合文化差距:人类文化进化的跨学科研究”的一部分。