Suppr超能文献

稀疏的突触连接对于前馈网络中的去相关和模式分离是必需的。

Sparse synaptic connectivity is required for decorrelation and pattern separation in feedforward networks.

机构信息

Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1E 6BT, UK.

Bioengineering Department, Imperial College London, London, SW7 2AZ, UK.

出版信息

Nat Commun. 2017 Oct 24;8(1):1116. doi: 10.1038/s41467-017-01109-y.

Abstract

Pattern separation is a fundamental function of the brain. The divergent feedforward networks thought to underlie this computation are widespread, yet exhibit remarkably similar sparse synaptic connectivity. Marr-Albus theory postulates that such networks separate overlapping activity patterns by mapping them onto larger numbers of sparsely active neurons. But spatial correlations in synaptic input and those introduced by network connectivity are likely to compromise performance. To investigate the structural and functional determinants of pattern separation we built models of the cerebellar input layer with spatially correlated input patterns, and systematically varied their synaptic connectivity. Performance was quantified by the learning speed of a classifier trained on either the input or output patterns. Our results show that sparse synaptic connectivity is essential for separating spatially correlated input patterns over a wide range of network activity, and that expansion and correlations, rather than sparse activity, are the major determinants of pattern separation.

摘要

模式分离是大脑的基本功能。据认为,这种计算的基础是发散的前馈网络,这些网络分布广泛,但表现出惊人相似的稀疏突触连接。Marr-Albus 理论假设,通过将重叠的活动模式映射到更多稀疏激活的神经元上,这些网络可以分离重叠的活动模式。但是,突触输入的空间相关性和由网络连接引入的空间相关性可能会影响性能。为了研究模式分离的结构和功能决定因素,我们构建了具有空间相关输入模式的小脑输入层模型,并系统地改变了它们的突触连接。通过在输入或输出模式上训练的分类器的学习速度来定量评估性能。我们的结果表明,稀疏的突触连接对于在广泛的网络活动中分离空间相关的输入模式是必不可少的,并且扩展和相关性而不是稀疏活动是模式分离的主要决定因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2de0/5653655/4011b15e3fba/41467_2017_1109_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验