Suppr超能文献

记录或自我表达的个人数据的二次使用:社交媒体和健康应用时代的消费者健康信息学与教育

Secondary Use of Recorded or Self-expressed Personal Data: Consumer Health Informatics and Education in the Era of Social Media and Health Apps.

作者信息

Staccini P, Fernandez-Luque L

出版信息

Yearb Med Inform. 2017 Aug;26(1):172-177. doi: 10.15265/IY-2017-037. Epub 2017 Sep 11.

Abstract

To summarize the state of the art during the year 2016 in the areas related to consumer health informatics and education with a special emphasis in secondary use of patient data. We conducted a systematic review of articles published in 2016, using PubMed with a predefined set of queries. We identified over 320 potential articles for review. Papers were considered according to their relevance for the topic of the section. Using consensus, we selected the 15 most representative papers, which were submitted to external reviewers for full review and scoring. Based on the scoring and quality criteria, five papers were finally selected as best papers The five best papers can be grouped in two major areas: 1) methods and tools to identify and collect formal requirements for secondary use of data, and 2) innovative topics highlighting the interest of carrying on "secondary" studies on patient data, more specifically on the data self-expressed by patients through social media tools. Regarding the formal requirements about informed consent, the selected papers report a comparison of legal aspects in European countries to find a common and unified grammar around the concept of "data donation". Regarding innovative approaches to value patient data, the selected papers report machine learning algorithms to extract knowledge from patient experience and satisfaction with health care delivery, drug and medication use, treatment compliance and barriers during cancer disease, or acceptation of public health actions such as vaccination. Secondary use of patient data (apart from personal health care record data) can be expressed according to many ways. Requirements to allow this secondary use have to be harmonized between countries, and social media platforms can be efficiently used to explore and create knowledge on patient experience with health problems or activities. Machine learning algorithms can explore those massive amounts of data to support health care professionals, and institutions provide more accurate knowledge about use and usage, behaviour, sentiment, or satisfaction about health care delivery.

摘要

总结2016年消费者健康信息学与教育相关领域的技术现状,特别强调患者数据的二次利用。我们使用PubMed并通过预定义的一组查询对2016年发表的文章进行了系统综述。我们识别出320多篇潜在的综述文章。根据文章与各章节主题的相关性进行筛选。通过协商一致,我们选出了15篇最具代表性的论文,提交给外部评审人员进行全面评审和评分。根据评分和质量标准,最终选出了五篇最佳论文。这五篇最佳论文可分为两个主要领域:1)识别和收集数据二次利用正式要求的方法和工具;2)创新性主题,突出了对患者数据进行“二次”研究的意义,特别是患者通过社交媒体工具自我表达的数据。关于知情同意的正式要求,入选论文比较了欧洲国家的法律方面,以找到围绕“数据捐赠”概念的通用统一规范。关于重视患者数据的创新方法,入选论文报告了机器学习算法,用于从患者对医疗服务、药物使用、治疗依从性以及癌症疾病期间的障碍或对疫苗接种等公共卫生行动的接受度等方面的体验和满意度中提取知识。患者数据的二次利用(个人医疗记录数据除外)可以通过多种方式实现。各国之间必须协调允许这种二次利用的要求,社交媒体平台可有效地用于探索和创建关于患者健康问题或活动体验的知识。机器学习算法可以挖掘这些海量数据,以支持医疗保健专业人员,并且机构能够提供关于医疗服务的使用和用法、行为、情绪或满意度的更准确知识。

相似文献

7
Education for contraceptive use by women after childbirth.产后妇女避孕使用教育。
Cochrane Database Syst Rev. 2002(3):CD001863. doi: 10.1002/14651858.CD001863.

引用本文的文献

3
How Participatory Health Informatics Catalyzes One Digital Health.参与式健康信息学如何催化一种数字健康。
Yearb Med Inform. 2023 Aug;32(1):48-54. doi: 10.1055/s-0043-1768727. Epub 2023 Dec 26.

本文引用的文献

7
Stop the privatization of health data.停止健康数据的私有化。
Nature. 2016 Jul 21;535(7612):345-8. doi: 10.1038/535345a.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验