College of Information Science and Engineering, Ocean University of China, Qingdao, China.
Department of Computer Science and Technology, Tsinghua University, Beijing, China.
J Healthc Eng. 2017;2017:3090343. doi: 10.1155/2017/3090343. Epub 2017 Jul 20.
Human activity recognition (HAR) aims to recognize activities from a series of observations on the actions of subjects and the environmental conditions. The vision-based HAR research is the basis of many applications including video surveillance, health care, and human-computer interaction (HCI). This review highlights the advances of state-of-the-art activity recognition approaches, especially for the activity representation and classification methods. For the representation methods, we sort out a chronological research trajectory from global representations to local representations, and recent depth-based representations. For the classification methods, we conform to the categorization of template-based methods, discriminative models, and generative models and review several prevalent methods. Next, representative and available datasets are introduced. Aiming to provide an overview of those methods and a convenient way of comparing them, we classify existing literatures with a detailed taxonomy including representation and classification methods, as well as the datasets they used. Finally, we investigate the directions for future research.
人体活动识别(HAR)旨在通过对主体动作和环境条件的一系列观察来识别活动。基于视觉的 HAR 研究是许多应用的基础,包括视频监控、医疗保健和人机交互(HCI)。本综述重点介绍了最先进的活动识别方法的进展,特别是针对活动表示和分类方法。对于表示方法,我们从全局表示到局部表示,再到最近的基于深度的表示,按时间顺序梳理了研究轨迹。对于分类方法,我们按照基于模板的方法、判别模型和生成模型的分类进行综述,并回顾了几种流行的方法。接下来,介绍了有代表性和可用的数据集。为了提供这些方法的概述,并为方便比较它们,我们使用详细的分类法对现有文献进行分类,包括表示和分类方法以及它们使用的数据集。最后,我们研究了未来研究的方向。