Grupo de Tecnología del Habla y Aprendizaje Automático (T.H.A.U. Group), Department of Electrical Engineering, Information Processing and Telecommunications Center, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain.
VisionLab, Department of Computer Science, Sapienza University, Rome, Italy.
Sci Data. 2024 Oct 9;11(1):1102. doi: 10.1038/s41597-024-03968-9.
This paper presents Multi-view Leap2 Hand Pose Dataset (ML2HP Dataset), a new dataset for hand pose recognition, captured using a multi-view recording setup with two Leap Motion Controller 2 devices. This dataset encompasses a diverse range of hand poses, recorded from different angles to ensure comprehensive coverage. The dataset includes real images with the associated precise and automatic hand properties, such as landmark coordinates, velocities, orientations, and finger widths. This dataset has been meticulously designed and curated to maintain a balance in terms of subjects, hand poses, and the usage of right or left hand, ensuring fairness and parity. The content includes 714,000 instances from 21 subjects of 17 different hand poses (including real images and 247 associated hand properties). The multi-view setup is necessary to mitigate hand occlusion phenomena, ensuring continuous tracking and pose estimation required in real human-computer interaction applications. This dataset contributes to advancing the field of multimodal hand pose recognition by providing a valuable resource for developing advanced artificial intelligence human computer interfaces.
本文提出了多视角 leap2 手姿态数据集(ML2HP 数据集),这是一个新的手姿态识别数据集,使用带有两个 Leap Motion Controller 2 设备的多视角记录设置进行捕获。该数据集包含了来自不同角度的各种手姿态,以确保全面覆盖。该数据集包含真实图像以及相关的精确和自动手属性,如地标坐标、速度、方向和手指宽度。该数据集经过精心设计和管理,以在主体、手姿态和右手或左手的使用方面保持平衡,确保公平性和一致性。内容包括 21 个主体的 17 种不同手姿态的 714,000 个实例(包括真实图像和 247 个相关的手属性)。多视角设置是减轻手遮挡现象所必需的,这确保了在实际人机交互应用中连续的跟踪和姿态估计。该数据集通过为开发先进的人工智能人机接口提供有价值的资源,为多模态手姿态识别领域的发展做出了贡献。