Suppr超能文献

一种基于深度神经网络的癫痫患者癫痫发作活动识别方法。

A deep neural network-based approach for seizure activity recognition of epilepsy sufferers.

作者信息

Khurshid Danial, Wahid Fazli, Ali Sikandar, Gumaei Abdu H, Alzanin Samah M, Mosleh Mogeeb A A

机构信息

Department of Information Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan.

College of Science and Engineering, School of Computing, University of Derby, Derby, United Kingdom.

出版信息

Front Med (Lausanne). 2024 Jul 24;11:1405848. doi: 10.3389/fmed.2024.1405848. eCollection 2024.

Abstract

Epilepsy is one of the most frequent neurological illnesses caused by epileptic seizures and the second most prevalent neurological ailment after stroke, affecting millions of people worldwide. People with epileptic disease are considered a category of people with disabilities. It significantly impairs a person's capacity to perform daily tasks, especially those requiring focusing or remembering. Electroencephalogram (EEG) signals are commonly used to diagnose people with epilepsy. However, it is tedious, time-consuming, and subjected to human errors. Several machine learning techniques have been applied to recognize epilepsy previously, but they have some limitations. This study proposes a deep neural network (DNN) machine learning model to determine the existing limitations of previous studies by improving the recognition efficiency of epileptic disease. A public dataset is used in this study and classified into training and testing sets. Experiments were performed to evaluate the DNN model with different dataset classification ratios (80:20), (70:30), (60:40), and (50:50) for training and testing, respectively. Results were evaluated by using different performance metrics including validations, and comparison processes that allow the assessment of the model's effectiveness. The experimental results showed that the overall efficiency of the proposed model is the highest compared with previous works, with an accuracy rate of 97%. Thus, this study is more accurate and efficient than the existing seizure detection approaches. DNN model has great potential for recognizing epileptic patient activity using a numerical EEG dataset offering a data-driven approach to improve the accuracy and reliability of seizure detection systems for the betterment of patient care and management of epilepsy.

摘要

癫痫是由癫痫发作引起的最常见的神经系统疾病之一,也是仅次于中风的第二大常见神经系统疾病,影响着全球数百万人。癫痫患者被视为一类残疾人。它严重损害了一个人执行日常任务的能力,尤其是那些需要集中注意力或记忆的任务。脑电图(EEG)信号通常用于诊断癫痫患者。然而,这既繁琐又耗时,还容易出现人为错误。此前已经应用了几种机器学习技术来识别癫痫,但它们存在一些局限性。本研究提出了一种深度神经网络(DNN)机器学习模型,通过提高癫痫疾病的识别效率来确定先前研究存在的局限性。本研究使用了一个公共数据集,并将其分为训练集和测试集。分别以不同的数据集分类比例(80:20)、(70:30)、(60:40)和(50:50)对训练和测试的DNN模型进行了实验。通过使用包括验证在内的不同性能指标以及允许评估模型有效性的比较过程来评估结果。实验结果表明,与先前的工作相比,所提出模型的整体效率最高,准确率为97%。因此,本研究比现有的癫痫发作检测方法更准确、更高效。DNN模型在使用数字EEG数据集识别癫痫患者活动方面具有巨大潜力,提供了一种数据驱动的方法来提高癫痫发作检测系统的准确性和可靠性,以改善癫痫患者的护理和管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cfd/11326242/57102d1104b4/fmed-11-1405848-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验