Suppr超能文献

通过使用电子病历的增强重采样分类对急性冠状动脉综合征进行主要不良心血管事件预测

MACE prediction of acute coronary syndrome via boosted resampling classification using electronic medical records.

作者信息

Huang Zhengxing, Chan Tak-Ming, Dong Wei

机构信息

College of Biomedical Engineering and Instrument Science, Zhejiang University, China.

Philips Research China - Healthcare, China.

出版信息

J Biomed Inform. 2017 Feb;66:161-170. doi: 10.1016/j.jbi.2017.01.001. Epub 2017 Jan 5.

Abstract

OBJECTIVES

Major adverse cardiac events (MACE) of acute coronary syndrome (ACS) often occur suddenly resulting in high mortality and morbidity. Recently, the rapid development of electronic medical records (EMR) provides the opportunity to utilize the potential of EMR to improve the performance of MACE prediction. In this study, we present a novel data-mining based approach specialized for MACE prediction from a large volume of EMR data.

METHODS

The proposed approach presents a new classification algorithm by applying both over-sampling and under-sampling on minority-class and majority-class samples, respectively, and integrating the resampling strategy into a boosting framework so that it can effectively handle imbalance of MACE of ACS patients analogous to domain practice. The method learns a new and stronger MACE prediction model each iteration from a more difficult subset of EMR data with wrongly predicted MACEs of ACS patients by a previous weak model.

RESULTS

We verify the effectiveness of the proposed approach on a clinical dataset containing 2930 ACS patient samples with 268 feature types. While the imbalanced ratio does not seem extreme (25.7%), MACE prediction targets pose great challenge to traditional methods. As these methods degenerate dramatically with increasing imbalanced ratios, the performance of our approach for predicting MACE remains robust and reaches 0.672 in terms of AUC. On average, the proposed approach improves the performance of MACE prediction by 4.8%, 4.5%, 8.6% and 4.8% over the standard SVM, Adaboost, SMOTE, and the conventional GRACE risk scoring system for MACE prediction, respectively.

CONCLUSIONS

We consider that the proposed iterative boosting approach has demonstrated great potential to meet the challenge of MACE prediction for ACS patients using a large volume of EMR.

摘要

目的

急性冠状动脉综合征(ACS)的主要不良心脏事件(MACE)常突然发生,导致高死亡率和高发病率。近年来,电子病历(EMR)的快速发展为利用EMR的潜力来改善MACE预测性能提供了机会。在本研究中,我们提出了一种基于数据挖掘的新方法,专门用于从大量EMR数据中预测MACE。

方法

所提出的方法通过分别对少数类和多数类样本进行过采样和欠采样,并将重采样策略集成到一个增强框架中,提出了一种新的分类算法,以便它能够有效地处理类似于领域实践的ACS患者MACE的不平衡问题。该方法在每次迭代中从EMR数据的一个更困难的子集中学习一个新的、更强的MACE预测模型,该子集中包含先前弱模型错误预测的ACS患者的MACE。

结果

我们在一个包含2930个ACS患者样本、268种特征类型的临床数据集上验证了所提出方法的有效性。虽然不平衡率似乎并不极端(25.7%),但MACE预测目标对传统方法提出了巨大挑战。由于这些方法随着不平衡率的增加而急剧退化,我们的MACE预测方法的性能仍然稳健,AUC达到0.672。平均而言,所提出的方法分别比标准支持向量机(SVM)、Adaboost、SMOTE和传统的MACE预测GRACE风险评分系统的MACE预测性能提高了4.8%、4.5%、8.6%和4.8%。

结论

我们认为,所提出的迭代增强方法在利用大量EMR应对ACS患者MACE预测挑战方面已显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验