Suppr超能文献

增强特征在非小细胞肺癌术后生存预测及辅助治疗推荐中协同放射组学发挥作用。

Augmented Features Synergize Radiomics in Post-Operative Survival Prediction and Adjuvant Therapy Recommendation for Non-Small Cell Lung Cancer.

作者信息

Chan Lawrence Wing-Chi, Ding Tong, Shao Huiling, Huang Mohan, Hui William Fuk-Yuen, Cho William Chi-Shing, Wong Sze-Chuen Cesar, Tong Ka Wai, Chiu Keith Wan-Hang, Huang Luyu, Zhou Haiyu

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.

Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR, China.

出版信息

Front Oncol. 2022 Jan 31;12:659096. doi: 10.3389/fonc.2022.659096. eCollection 2022.

Abstract

BACKGROUND

Owing to the cytotoxic effect, it is challenging for clinicians to decide whether post-operative adjuvant therapy is appropriate for a non-small cell lung cancer (NSCLC) patient. Radiomics has proven its promising ability in predicting survival but research on its actionable model, particularly for supporting the decision of adjuvant therapy, is limited.

METHODS

Pre-operative contrast-enhanced CT images of 123 NSCLC cases were collected, including 76, 13, 16, and 18 cases from R01 and AMC cohorts of The Cancer Imaging Archive (TCIA), Jiangxi Cancer Hospital and Guangdong Provincial People's Hospital respectively. From each tumor region, 851 radiomic features were extracted and two augmented features were derived therewith to estimate the likelihood of adjuvant therapy. Both Cox regression and machine learning models with the selected main and interaction effects of 853 features were trained using 76 cases from R01 cohort, and their test performances on survival prediction were compared using 47 cases from the AMC cohort and two hospitals. For those cases where adjuvant therapy was unnecessary, recommendations on adjuvant therapy were made again by the outperforming model and compared with those by IBM Watson for Oncology (WFO).

RESULTS

The Cox model outperformed the machine learning model in predicting survival on the test set (C-Index: 0.765 vs. 0.675). The Cox model consists of 5 predictors, interestingly 4 of which are interactions with augmented features facilitating the modulation of adjuvant therapy option. While WFO recommended no adjuvant therapy for only 13.6% of cases that received unnecessary adjuvant therapy, the same recommendations by the identified Cox model were extended to 54.5% of cases (McNemar's test = 0.0003).

CONCLUSIONS

A Cox model with radiomic and augmented features could predict survival accurately and support the decision of adjuvant therapy for bettering the benefit of NSCLC patients.

摘要

背景

由于细胞毒性作用,临床医生难以决定术后辅助治疗是否适用于非小细胞肺癌(NSCLC)患者。放射组学已证明其在预测生存方面具有可观的能力,但关于其可操作模型的研究有限,尤其是用于支持辅助治疗决策的研究。

方法

收集了123例NSCLC患者的术前增强CT图像,其中分别来自癌症影像存档(TCIA)的R01队列、江西肿瘤医院和广东省人民医院的病例数为76、13、16和18例。从每个肿瘤区域提取851个放射组学特征,并由此衍生出两个增强特征以估计辅助治疗的可能性。使用R01队列中的76例病例训练具有所选853个特征的主要和交互作用的Cox回归模型和机器学习模型,并使用AMC队列及两家医院的47例病例比较它们在生存预测方面的测试性能。对于那些不需要辅助治疗的病例,由表现最佳的模型再次给出辅助治疗建议,并与IBM Watson for Oncology(WFO)给出的建议进行比较。

结果

在测试集上,Cox模型在预测生存方面优于机器学习模型(C指数:0.765对0.675)。Cox模型由5个预测因子组成,有趣的是其中4个是与增强特征的交互作用,有助于调整辅助治疗方案。虽然WFO仅对13.6%接受了不必要辅助治疗的病例建议不进行辅助治疗,但所确定的Cox模型对54.5%的病例给出了相同建议(McNemar检验 = 0.0003)。

结论

具有放射组学和增强特征的Cox模型可以准确预测生存,并支持辅助治疗决策,以提高NSCLC患者的获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d606/8841850/19c1a492cd07/fonc-12-659096-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验