Suppr超能文献

GRcalculator:一款用于计算和挖掘剂量反应数据的在线工具。

GRcalculator: an online tool for calculating and mining dose-response data.

机构信息

LINCS-BD2K DCIC, Division of Biostatistics and Bioinformatics, Department of Environmental Health, University of Cincinnati, Cincinnati, OH, 45221, USA.

HMS LINCS Center, Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.

出版信息

BMC Cancer. 2017 Oct 24;17(1):698. doi: 10.1186/s12885-017-3689-3.

Abstract

BACKGROUND

Quantifying the response of cell lines to drugs or other perturbagens is the cornerstone of pre-clinical drug development and pharmacogenomics as well as a means to study factors that contribute to sensitivity and resistance. In dividing cells, traditional metrics derived from dose-response curves such as IC , AUC, and E , are confounded by the number of cell divisions taking place during the assay, which varies widely for biological and experimental reasons. Hafner et al. (Nat Meth 13:521-627, 2016) recently proposed an alternative way to quantify drug response, normalized growth rate (GR) inhibition, that is robust to such confounders. Adoption of the GR method is expected to improve the reproducibility of dose-response assays and the reliability of pharmacogenomic associations (Hafner et al. 500-502, 2017).

RESULTS

We describe here an interactive website ( www.grcalculator.org ) for calculation, analysis, and visualization of dose-response data using the GR approach and for comparison of GR and traditional metrics. Data can be user-supplied or derived from published datasets. The web tools are implemented in the form of three integrated Shiny applications (grcalculator, grbrowser, and grtutorial) deployed through a Shiny server. Intuitive graphical user interfaces (GUIs) allow for interactive analysis and visualization of data. The Shiny applications make use of two R packages (shinyLi and GRmetrics) specifically developed for this purpose. The GRmetrics R package is also available via Bioconductor and can be used for offline data analysis and visualization. Source code for the Shiny applications and associated packages (shinyLi and GRmetrics) can be accessed at www.github.com/uc-bd2k/grcalculator and www.github.com/datarail/gr_metrics .

CONCLUSIONS

GRcalculator is a powerful, user-friendly, and free tool to facilitate analysis of dose-response data. It generates publication-ready figures and provides a unified platform for investigators to analyze dose-response data across diverse cell types and perturbagens (including drugs, biological ligands, RNAi, etc.). GRcalculator also provides access to data collected by the NIH LINCS Program ( http://www.lincsproject.org /) and other public domain datasets. The GRmetrics Bioconductor package provides computationally trained users with a platform for offline analysis of dose-response data and facilitates inclusion of GR metrics calculations within existing R analysis pipelines. These tools are therefore well suited to users in academia as well as industry.

摘要

背景

量化细胞系对药物或其他扰动因素的反应是临床前药物开发和药物基因组学的基础,也是研究导致敏感性和耐药性的因素的一种手段。在有丝分裂细胞中,传统的基于剂量-反应曲线的指标,如 IC 50 、AUC 和 E max ,会受到实验过程中细胞分裂数量的影响,而这些数量因生物学和实验原因而有很大差异。Hafner 等人(Nat Meth 13:521-627, 2016)最近提出了一种替代方法来量化药物反应,即归一化生长率(GR)抑制,这种方法不受这种混杂因素的影响。采用 GR 方法有望提高剂量-反应试验的重现性和药物基因组学关联的可靠性(Hafner 等人,500-502, 2017)。

结果

我们在这里描述了一个交互式网站(www.grcalculator.org),用于使用 GR 方法计算、分析和可视化剂量-反应数据,并比较 GR 和传统指标。数据可以是用户提供的,也可以从已发表的数据集派生。这些网络工具以三个集成的 Shiny 应用程序(grcalculator、grbrowser 和 grtutorial)的形式实现,并通过 Shiny 服务器部署。直观的图形用户界面(GUI)允许对数据进行交互式分析和可视化。Shiny 应用程序利用了专门为此目的开发的两个 R 包(shinyLi 和 GRmetrics)。GRmetrics R 包也可通过 Bioconductor 使用,并可用于离线数据分析和可视化。Shiny 应用程序和相关包(shinyLi 和 GRmetrics)的源代码可在 www.github.com/uc-bd2k/grcalculatorwww.github.com/datarail/gr_metrics 上获得。

结论

GRcalculator 是一个功能强大、用户友好且免费的工具,可用于辅助分析剂量-反应数据。它生成可发表的图形,并为研究人员提供一个统一的平台,用于分析来自不同细胞类型和扰动因素(包括药物、生物配体、RNAi 等)的剂量-反应数据。GRcalculator 还提供了对 NIH LINCS 计划(http://www.lincsproject.org/)和其他公共领域数据集的数据访问。GRmetrics Bioconductor 包为计算能力强的用户提供了一个平台,用于离线分析剂量-反应数据,并有助于在现有的 R 分析管道中包含 GR 指标计算。因此,这些工具非常适合学术界和工业界的用户。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7260/5655815/e773f310bd9b/12885_2017_3689_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验