Suppr超能文献

ENGAGE 研究:整合神经影像学、虚拟现实和智能手机感应技术,以了解在精准医疗模式下自我调节来管理抑郁和肥胖的方法。

The ENGAGE study: Integrating neuroimaging, virtual reality and smartphone sensing to understand self-regulation for managing depression and obesity in a precision medicine model.

机构信息

Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, United States; MIRECC VISN21, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, United States.

Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, United States.

出版信息

Behav Res Ther. 2018 Feb;101:58-70. doi: 10.1016/j.brat.2017.09.012. Epub 2017 Oct 7.

Abstract

Precision medicine models for personalizing achieving sustained behavior change are largely outside of current clinical practice. Yet, changing self-regulatory behaviors is fundamental to the self-management of complex lifestyle-related chronic conditions such as depression and obesity - two top contributors to the global burden of disease and disability. To optimize treatments and address these burdens, behavior change and self-regulation must be better understood in relation to their neurobiological underpinnings. Here, we present the conceptual framework and protocol for a novel study, "Engaging self-regulation targets to understand the mechanisms of behavior change and improve mood and weight outcomes (ENGAGE)". The ENGAGE study integrates neuroscience with behavioral science to better understand the self-regulation related mechanisms of behavior change for improving mood and weight outcomes among adults with comorbid depression and obesity. We collect assays of three self-regulation targets (emotion, cognition, and self-reflection) in multiple settings: neuroimaging and behavioral lab-based measures, virtual reality, and passive smartphone sampling. By connecting human neuroscience and behavioral science in this manner within the ENGAGE study, we develop a prototype for elucidating the underlying self-regulation mechanisms of behavior change outcomes and their application in optimizing intervention strategies for multiple chronic diseases.

摘要

个性化实现持续行为改变的精准医学模型在很大程度上还未应用于当前的临床实践。然而,改变自我调节行为对于管理与生活方式相关的复杂慢性病(如抑郁和肥胖)至关重要,因为这些疾病是全球疾病和残疾负担的主要原因。为了优化治疗方法并解决这些负担,必须更好地理解行为改变和自我调节与其神经生物学基础之间的关系。在这里,我们提出了一项新研究的概念框架和方案,即“通过参与自我调节目标来了解行为改变的机制,改善情绪和体重(ENGAGE)”。该 ENGAGE 研究将神经科学与行为科学相结合,以更好地理解与行为改变相关的自我调节机制,从而改善患有抑郁和肥胖症的成年人的情绪和体重。我们在多个环境中收集三个自我调节目标(情绪、认知和自我反思)的检测结果:神经影像学和行为实验室测量、虚拟现实和被动智能手机采样。通过在 ENGAGE 研究中以这种方式将人类神经科学和行为科学联系起来,我们开发出一种原型,用于阐明行为改变结果的潜在自我调节机制及其在优化多种慢性疾病的干预策略中的应用。

相似文献

5
Targeting self-regulation to promote health behaviors in children.针对自我调节,促进儿童健康行为。
Behav Res Ther. 2018 Feb;101:71-81. doi: 10.1016/j.brat.2017.09.008. Epub 2017 Sep 28.
7
Smart Healthcare Systems and Precision Medicine.智能医疗系统与精准医学。
Adv Exp Med Biol. 2019;1192:263-279. doi: 10.1007/978-981-32-9721-0_13.

引用本文的文献

本文引用的文献

6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验