Scheler Gabriele
Carl Correns Foundation for Mathematical Biology, Mountain View, CA, 94040, USA.
F1000Res. 2017 Jul 25;6:1222. doi: 10.12688/f1000research.12130.2. eCollection 2017.
In this paper, we present data for the lognormal distributions of spike rates, synaptic weights and intrinsic excitability (gain) for neurons in various brain areas, such as auditory or visual cortex, hippocampus, cerebellum, striatum, midbrain nuclei. We find a remarkable consistency of heavy-tailed, specifically lognormal, distributions for rates, weights and gains in all brain areas examined. The difference between strongly recurrent and feed-forward connectivity (cortex vs. striatum and cerebellum), neurotransmitter (GABA (striatum) or glutamate (cortex)) or the level of activation (low in cortex, high in Purkinje cells and midbrain nuclei) turns out to be irrelevant for this feature. Logarithmic scale distribution of weights and gains appears to be a general, functional property in all cases analyzed. We then created a generic neural model to investigate adaptive learning rules that create and maintain lognormal distributions. We conclusively demonstrate that not only weights, but also intrinsic gains, need to have strong Hebbian learning in order to produce and maintain the experimentally attested distributions. This provides a solution to the long-standing question about the type of plasticity exhibited by intrinsic excitability.
在本文中,我们展示了不同脑区(如听觉或视觉皮层、海马体、小脑、纹状体、中脑核团)中神经元的发放率、突触权重和内在兴奋性(增益)的对数正态分布数据。我们发现在所有被研究的脑区中,发放率、权重和增益的重尾分布,特别是对数正态分布,具有显著的一致性。结果表明,强循环连接与前馈连接(皮层与纹状体和小脑)、神经递质(纹状体中的GABA或皮层中的谷氨酸)或激活水平(皮层中低,浦肯野细胞和中脑核团中高)之间的差异与这一特征无关。在所有分析的情况下,权重和增益的对数尺度分布似乎是一种普遍的功能特性。然后,我们创建了一个通用神经模型来研究产生并维持对数正态分布的自适应学习规则。我们最终证明,不仅权重,而且内在增益也需要有强大的赫布学习,才能产生并维持实验验证的分布。这为长期以来关于内在兴奋性所表现出的可塑性类型的问题提供了解决方案。