Suppr超能文献

视觉皮层兴奋性微电路组织原理。

Principles of visual cortex excitatory microcircuit organization.

作者信息

Chou Christina Y C, Wong Hovy H W, Guo Connie, Boukoulou Kiminou E, Huang Cleo, Jannat Javid, Klimenko Tal, Li Vivian Y, Liang Tasha A, Wu Vivian C, Sjöström P Jesper

机构信息

Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada.

Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.

出版信息

Innovation (Camb). 2024 Dec 12;6(1):100735. doi: 10.1016/j.xinn.2024.100735. eCollection 2025 Jan 6.

Abstract

Synapse-specific connectivity and dynamics determine microcircuit function but are challenging to explore with classic paired recordings due to their low throughput. We therefore implemented optomapping, a ∼100-fold faster two-photon optogenetic method. In mouse primary visual cortex (V1), we optomapped 30,454 candidate inputs to reveal 1,790 excitatory inputs to pyramidal, basket, and Martinotti cells. Across these cell types, log-normal distribution of synaptic efficacies emerged as a principle. For pyramidal cells, optomapping reproduced the canonical circuit but unexpectedly uncovered that the excitation of basket cells concentrated to layer 5 and that of Martinotti cells dominated in layer 2/3. The excitation of basket cells was stronger and reached farther than the excitation of pyramidal cells, which may promote stability. Short-term plasticity surprisingly depended on cortical layer in addition to target cell. Finally, optomapping revealed an overrepresentation of shared inputs for interconnected layer-6 pyramidal cells. Thus, by resolving the throughput problem, optomapping uncovered hitherto unappreciated principles of V1 structure.

摘要

突触特异性的连接性和动力学决定了微电路功能,但由于其低通量,用经典的配对记录来探索具有挑战性。因此,我们实施了光映射,这是一种速度快约100倍的双光子光遗传学方法。在小鼠初级视觉皮层(V1)中,我们对30454个候选输入进行了光映射,以揭示对锥体、篮状和马丁诺蒂细胞的1790个兴奋性输入。在这些细胞类型中,突触效能的对数正态分布成为一个原则。对于锥体细胞,光映射再现了典型电路,但出乎意料地发现,篮状细胞的兴奋集中在第5层,而马丁诺蒂细胞的兴奋在第2/3层占主导。篮状细胞的兴奋比锥体细胞的兴奋更强且传播更远,这可能促进稳定性。短期可塑性出人意料地除了依赖靶细胞外还取决于皮层层。最后,光映射揭示了相互连接的第6层锥体细胞共享输入的过度表征。因此,通过解决通量问题,光映射揭示了V1结构迄今未被认识到的原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e0/11763898/6d0969b11d61/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验